首页> 外文期刊>IEEE Transactions on Robotics >MIMO Output Estimation With Reduced Multirate Sampling for Real-Time Haptic Rendering
【24h】

MIMO Output Estimation With Reduced Multirate Sampling for Real-Time Haptic Rendering

机译:用于实时触觉渲染的具有减少的多速率采样的MIMO输出估计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an output-estimation method with reduced multirate sampling for real-time multi-input–multi-output (MIMO) haptic rendering. Haptic systems employ physics-based deformation models such as finite-element models and mass-spring models. These physics-based deformation models for high fidelity have to deal with complex geometries, material properties, and realistic behavior of virtual objects. This incurs heavy computational burden and time delays so that the reflective force often cannot be computed at 1 kHz which is a safe frequency for stability of the haptic systems. Lower update rates of the haptic loop and the computational time delay also deteriorate the realism of the haptic system. This problem is resolved by the proposed MIMO output-estimation method. The haptic system is designed to have two sampling times, $T$ and $JT$, for the haptic loop and the graphic loop, respectively. Dynamics of the physics-based deformation is captured in a discrete and deterministic input–output model. The MIMO output estimation method is developed drawing on a least-squares algorithm and an output-error estimation model. The P-matrix resetting algorithm is also designed to deal with the changing input–output relationship of the deformation model. The parameters of the discrete input–output model are adjusted online. Intersample outputs are computed from the estimated input–output model at a high rate, and traces the correct output computed from the deformation model. This method enables graphics rendering at a lower update rate, and haptic rendering at a higher update rate. Convergence of the proposed method is proved, and performance is demonstrated through simulation with both a linear tensor-mass and a linear mass-spring models.
机译:本文提出了一种用于实时多输入多输出(MIMO)触觉渲染的具有减少的多速率采样的输出估计方法。触觉系统采用基于物理的变形模型,例如有限元模型和质量弹簧模型。这些用于高保真度的基于物理的变形模型必须处理复杂的几何形状,材料属性以及虚拟对象的真实行为。这带来了沉重的计算负担和时间延迟,使得反射力通常不能以1kHz来计算,这对于触觉系统的稳定性是安全的频率。触觉循环的较低更新速率和计算时间延迟也使触觉系统的真实性恶化。通过提出的MIMO输出估计方法可以解决此问题。触觉系统被设计为分别对触觉循环和图形循环有两个采样时间$ T $和$ JT $。基于物理的变形的动力学是在离散的确定性输入输出模型中捕获的。 MIMO输出估计方法是基于最小二乘算法和输出误差估计模型开发的。还设计了P矩阵重置算法来处理变形模型的输入输出关系的变化。离散输入输出模型的参数可以在线调整。样本间的输出是从估计的输入-输出模型高速计算得出的,并跟踪从变形模型计算出的正确输出。此方法可以以较低的更新速率进行图形渲染,并以较高的更新速率进行触觉渲染。证明了所提方法的收敛性,并通过使用线性张量质量模型和线性质量弹簧模型进行仿真,证明了性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号