首页> 外文期刊>IEEE Transactions on Robotics >Information-Efficient 3-D Visual SLAM for Unstructured Domains
【24h】

Information-Efficient 3-D Visual SLAM for Unstructured Domains

机译:非结构化域的信息有效型3-D Visual SLAM

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel vision-based sensory package and an information-efficient simultaneous localization and mapping (SLAM) algorithm. Together, we offer a solution for building 3-D dense map in an unknown and unstructured environment with minimal computational costs. The sensory package we adopt consists of a conventional camera and a range imager, which provide range and bearing and elevation inputs as commonly used by 3-D feature-based SLAM. In addition, we propose an algorithm to give the robots the `intelligencerdquo to select, out of the steadily collected data, the maximally informative observations to be used in the estimation process. We show that, although the actual evaluation of information gain for each frame introduces an additional computational cost, the overall efficiency is significantly increased by keeping the matrix compact. The noticeable advantage of this strategy is that the continuously gathered data are not heuristically segmented prior to being input to the filter. Quite the opposite, the scheme lends itself to be statistically optimal and is capable of handling large datasets collected at realistic sampling rates.
机译:本文提出了一种新颖的基于视觉的感觉包和一种信息有效的同时定位和映射(SLAM)算法。我们共同提供了一种解决方案,可在未知且非结构化的环境中以最少的计算成本构建3-D密集地图。我们采用的感官包由常规相机和距离成像器组成,它们提供基于3-D特征的SLAM常用的距离,方位和仰角输入。此外,我们提出了一种算法,使机器人具有“智能”能力,可以从稳定收集的数据中选择要在估计过程中使用的最大信息量的观测值。我们表明,尽管实际评估每个帧的信息增益会带来额外的计算成本,但通过保持矩阵紧凑,整体效率会大大提高。该策略的显着优势是,连续收集的数据在输入到过滤器之前不会进行启发式分割。恰恰相反,该方案使自己在统计上是最优的,并且能够处理以实际采样率收集的大型数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号