首页> 外文期刊>IEEE Transactions on Robotics >Improving the Performance of Sampling-Based Motion Planning With Symmetry-Based Gap Reduction
【24h】

Improving the Performance of Sampling-Based Motion Planning With Symmetry-Based Gap Reduction

机译:通过基于对称的间隙减少来提高基于采样的运动计划的性能

获取原文
获取原文并翻译 | 示例

摘要

Sampling-based nonholonomic and kinodynamic planning iteratively constructs solutions with sampled controls. A constructed trajectory is returned as an acceptable solution if its “gaps,” including discontinuities within the trajectory and mismatches between the terminal and goal states, are within a given gap tolerance. For a given coarseness in the sampling of the control space, finding a trajectory with a small gap tolerance might be either impossible or extremely expensive. In this paper, we propose an efficient trajectory perturbation method, which complements existing steering and perturbation methods, enabling these sampling-based algorithms to quickly obtain solutions by reducing large gaps in constructed trajectories. Our method uses system symmetry, e.g., invariance of dynamics with respect to certain state transformations, to achieve efficient gap reduction by evaluating trajectory final state with a constant-time operation, and, naturally, generating the admissible perturbed trajectories. Simulation results demonstrate dramatic performance improvement for unidirectional, bidirectional, and PRM-based sampling-based algorithms with the proposed enhancement with respect to their basic counterparts on different systems: one with the second-order dynamics, one with nonholonomic constraints, and one with two different modes.
机译:基于采样的非完整和运动动力学计划可以迭代地构造带有采样控件的解决方案。如果构造的轨迹的“间隙”(包括轨迹内的不连续性以及最终状态和目标状态之间的不匹配)在给定的间隙公差之内,则将其作为可接受的解决方案返回。对于控制空间采样中给定的粗糙度,找到具有小间隙公差的轨迹可能是不可能的,或者是非常昂贵的。在本文中,我们提出了一种有效的轨迹扰动方法,该方法补充了现有的转向和扰动方法,使这些基于采样的算法能够通过减少构造轨迹中的大间隙来快速获得解。我们的方法使用系统对称性(例如,相对于某些状态转换的动力学不变性),通过使用恒定时间操作评估轨迹的最终状态来实现有效的间隙减小,并自然地生成可允许的扰动轨迹。仿真结果表明,对于单向,双向和基于PRM的基于采样的算法,其性能相对于不同系统上的基本对应功能均得到了显着改进:一种具有二阶动力学特性,一种具有非完整约束,一种具有两种不同的模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号