首页> 外文期刊>Robotics, IEEE Transactions on >Context Identification for Efficient Multiple-Model State Estimation of Systems With Cyclical Intermittent Dynamics
【24h】

Context Identification for Efficient Multiple-Model State Estimation of Systems With Cyclical Intermittent Dynamics

机译:具有循环间歇动力学系统的有效多模型状态估计的上下文识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach to accurate and scalable multiple-model (MM) state estimation for hybrid systems with intermittent, cyclical, multimodal dynamics. The approach consists of using discrete-state estimation to identify a system’s dynamical and behavioral contexts and determine which motion models appropriately represent current dynamics and which individual and MM filters are appropriate for state estimation. Furthermore, the heirarchical structure of the dynamics is explicitly encoded, which enables detection not only of rapid transitions between motion models but of higher level behavioral transitions as well. This improves the accuracy and scalability of conventional MM state estimation, which is demonstrated experimentally on a mobile robot that exhibits fast-switching, multimodal dynamics.
机译:本文提出了一种具有间歇,循环,多模态动力学的混合系统准确,可扩展的多模型(MM)状态估计方法。该方法包括使用离散状态估计来识别系统的动态和行为环境,并确定哪些运动模型适当地表示当前动态,以及哪些单独的滤波器和MM滤波器适合进行状态估计。此外,动力学的分层结构得到显式编码,这不仅可以检测运动模型之间的快速转换,还可以检测更高级别的行为转换。这提高了常规MM状态估计的准确性和可伸缩性,这在具有快速切换,多模式动态特性的移动机器人上通过实验得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号