首页> 外文期刊>Robotics, IEEE Transactions on >Methods to Segment Hard Inclusions in Soft Tissue During Autonomous Robotic Palpation
【24h】

Methods to Segment Hard Inclusions in Soft Tissue During Autonomous Robotic Palpation

机译:机器人自动触诊过程中分割软组织中硬包裹体的方法

获取原文
获取原文并翻译 | 示例

摘要

Localizing tumors and measuring tissue mechanical properties can aid in surgical planning and evaluating the progression of disease. In this paper, autonomous robotic palpation with supervised machine learning algorithms enables mechanical localization and segmentation of stiff inclusions in artificial tissue. Elastography generates training data for the learning algorithms, providing a noninvasive, inclusion-specific characterization of tissue mechanics. Once an embedded hard inclusion was identified in the elastographic image, Gaussian discriminant analysis generated a classifier to threshold stiffness values acquired from autonomous robotic palpation. This classifier was later used to classify newly acquired points as either part of the inclusion or surrounding soft tissue. An expectation-maximization algorithm with underlying Markov random fields improved this initial classifier over successive iterations to better approximate the boundary of the inclusion. Results demonstrate robustness with respect to inclusion shape, size, and the initial classifier value. For three trials segmenting a cubic inclusion, sensitivity was above 0.95 and specificity was above 0.92.
机译:定位肿瘤和测量组织的机械特性可以帮助进行外科手术规划和评估疾病的进展。在本文中,具有监督的机器学习算法的自主机器人触诊使机械定位和分割人造组织中的硬性夹杂物成为可能。弹性成像生成用于学习算法的训练数据,从而提供组织力学的非侵入性,包含特定特征。一旦在弹性成像图像中识别出嵌入的硬质夹杂物,高斯判别分析就会生成一个分类器,以对从自主机器人触诊获得的阈值刚度值进行分类。该分类器随后被用于将新获得的点分类为包含物或周围软组织的一部分。具有潜在马尔可夫随机场的期望最大化算法在连续迭代中改进了该初始分类器,以更好地近似包含的边界。结果证明了对于夹杂物形状,大小和初始分类器值的鲁棒性。对于细分为立方包涵体的三项试验,敏感性高于0.95,特异性高于0.92。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号