首页> 外文期刊>IEEE transactions on automation science and engineering >Depth Estimation of Hard Inclusions in Soft Tissue by Autonomous Robotic Palpation Using Deep Recurrent Neural Network
【24h】

Depth Estimation of Hard Inclusions in Soft Tissue by Autonomous Robotic Palpation Using Deep Recurrent Neural Network

机译:使用深复发性神经网络通过自主机器人触诊深度估计软组织中的硬夹杂物

获取原文
获取原文并翻译 | 示例

摘要

Accurately detecting tumors and estimating the depth of tumors is essential in the surgical removal of tumors. In robotic-assisted surgery, autonomous robotic palpation has the potential to provide more precise detection, tumors' depth estimation, and less intrusion when normal tissues surround tumors. In this article, by mimicking the human finger touch, we propose a tactile sensing-based deep recurrent neural network (DRNN) with long short-term memory (LSTM) architecture to improve the accuracy of the detection and depth estimation of tumors embedded in soft tissue. In the experimental setup, the hard inclusions simulate the tumors, while the phantom tissue is fabricated by silicon to simulate the soft tissue. During the experiment, the data from the force sensor and displacement of the robot palpation probe are for detection and depth estimation purposes. The collected sequential data set of the force and the displacement of the probe during one completed palpation process will go through the proposed DRNN network with deep LSTM architecture, in which the temporal dependencies of the sequential data will be captured in the cell states in the deep LSTM layers. Subsequently, the softmax classifier is adopted to determine if there is any hard inclusion exists and offer the depth estimation of the hard inclusions. Experiments based on 396 real data sets demonstrate that the detection accuracy for the testing data set is 99.2% and the depth estimation accuracy for the testing data set is 95.8%. The accuracy of the proposed method is best when comparing with other widely used methods. Note to Practitioners-The palpation of tumors motivated this article in the robot-assisted surgical systems through tactile feedback. In order to mimic the human touch on the soft tissue, this article presents a deep-learning-based approach to estimate the depth of the hard inclusions in the phantom tissue through force information. The displacement of the palpation probe and the touch force during one palpation are recorded as data sequences to train the deep model, which aims to capture dynamics and long-term dependence of the palpation process. In this article, we made the first successful attempt to accurately estimate the depth of the hard inclusions buried at different locations of the phantom tissue using only force information. The proposed approach can work in different robot-assisted scenarios, such as master-slave robotic surgery. In the clinic applications, the force sensor will be integrated at the end-effector of the robotic manipulator. According to the specific requirements, the force sensor and the robotic manipulator might be different from those used in this article. For some applications, such as the laparoscopic interventions, the complete vertical contact tends to be difficult to obtain due to the laparoscopic port effects. The projection of the recorded force data and displacement can obtain the information in the normal direction. The future work is going to be extended to tissue environments with arbitrary surface and tumors with various shapes/depths for more complex and prospective clinical applications.
机译:准确地检测肿瘤并估算肿瘤的深度在手术移除肿瘤中是必不可少的。在机器人辅助手术中,自主机器人触诊有可能提供更精确的检测,肿瘤的深度估计,并且当正常组织环绕肿瘤时的侵扰程度更少。在本文中,通过模拟人的手指触摸,我们提出了一种基于触觉的基于深度复发性神经网络(DRNN),具有长的短期记忆(LSTM)架构,以提高嵌入软件肿瘤的肿瘤的检测和深度估计的准确性组织。在实验设置中,硬夹杂物模拟肿瘤,而硅组织由硅制造以模拟软组织。在实验期间,来自力传感器和机器人触发探针的位移的数据用于检测和深度估计目的。在一个完成的触摸过程中的力和探针的位移的收集的顺序数据集将通过深入的LSTM架构通过所提出的DRNN网络,其中顺序数据的时间依赖性将在深度的小区状态中捕获LSTM层。随后,采用SoftMax分类器来确定是否存在任何硬夹具并提供硬夹杂物的深度估计。基于396真实数据集的实验表明,测试数据集的检测精度为99.2%,测试数据集的深度估计精度为95.8%。与其他广泛使用的方法相比,所提出的方法的准确性最佳。从业者的说明 - 通过触觉反馈,肿瘤的触诊在机器人辅助手术系统中激励了本文。为了模仿软组织的人触摸,本文介绍了一种基于深度学习的方法,以通过力信息来估计幻象组织中的硬质夹层的深度。触诊探针和触摸力在一个触诊期间的位移被记录为培训深层模型的数据序列,旨在捕捉触诊过程的动态和长期依赖性。在本文中,我们首次成功地尝试准确地估计在幻象组织的不同位置的硬夹层的深度使用仅使用力信息。所提出的方法可以在不同的机器人辅助场景中工作,例如主从机器人手术。在临床应用中,力传感器将集成在机器人操纵器的末端执行器。根据具体要求,力传感器和机器人操纵器可能与本文中使用的要求不同。对于一些应用,例如腹腔镜干预措施,由于腹腔镜壁射回效应,完全垂直触点易于获得。记录的力数据和位移的投影可以在正常方向上获得信息。未来的工作将扩展到具有任意表面和肿瘤的组织环境,具有各种形状/深度,可用于更复杂和前瞻性临床应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号