首页> 外文期刊>IEEE Transactions on Robotics and Automation >An improvement of the Lagrangean relaxation approach for job shop scheduling: a dynamic programming method
【24h】

An improvement of the Lagrangean relaxation approach for job shop scheduling: a dynamic programming method

机译:拉格朗日松弛法在车间调度中的一种改进:一种动态规划方法

获取原文
获取原文并翻译 | 示例

摘要

Concerns the use of Lagrangean relaxation for complex scheduling problems. The technique has been used to obtain near-optimal solutions for single machine and parallel machine problems. It consists of relaxing capacity constraints using Lagrange multipliers. The relaxed problem can be decomposed into independent job level subproblems. Luh et al. (1990, 1991) extended the technique to general job shop scheduling by introducing additional Lagrangean multipliers to relax precedence constraints, so that each job level relaxed subproblem can be further decomposed into a set of operation level subproblems which can easily be solved by enumeration. Unfortunately, the operation level subproblems exhibit solution oscillation from iteration to iteration and, in many cases, prevent convergence. Although several methods to prevent oscillation have been proposed, none is satisfactory. We propose an efficient pseudo-polynomial time dynamic programming algorithm. We show that, by extending the technique to job shop scheduling problems, the relaxation of the precedence constraints becomes unnecessary, and thus the oscillation problem vanishes. This algorithm significantly improves the efficiency of the Lagrangean relaxation approach to job-shop scheduling, and makes it possible to optimize "min-max" criteria by Lagrangean relaxation. These criteria have been neglected in the Lagrangean relaxation literature due to their indecomposability. Computational results are given to demonstrate the improvements due to this algorithm.
机译:有关将Lagrangean松弛用于复杂的调度问题。该技术已用于获取单机和并行机问题的最佳解决方案。它由使用拉格朗日乘数的宽松容量约束组成。轻松的问题可以分解为独立的工作级别子问题。 Luh等。 (1990,1991)通过引入额外的拉格朗日乘子来放宽优先约束,将该技术扩展到一般的车间调度中,从而每个作业级别的松弛子问题可以进一步分解为一组操作级别的子问题,可以通过枚举轻松地解决。不幸的是,操作级别的子问题在迭代之间表现出解的振荡,并且在许多情况下阻止了收敛。尽管已经提出了几种防止振荡的方法,但是都没有令人满意的方法。我们提出了一种有效的伪多项式时间动态规划算法。我们表明,通过将技术扩展到车间调度问题,就不必放松优先约束,从而消除了振荡问题。该算法显着提高了Lagrangean松弛方法在车间调度中的效率,并且可以通过Lagrangean松弛优化“最小-最大”标准。这些标准由于不可分解而在拉格朗日松弛文献中被忽略。计算结果表明了该算法的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号