首页> 外文期刊>Computers & operations research >Genetic programming-based hyper-heuristic approach for solving dynamic job shop scheduling problem with extended technical precedence constraints
【24h】

Genetic programming-based hyper-heuristic approach for solving dynamic job shop scheduling problem with extended technical precedence constraints

机译:基于遗传编程的超级启发式方法,用于求解技术优先约束的动态作业商店调度问题

获取原文
获取原文并翻译 | 示例

摘要

Extended technical precedence constraints (ETPC) in dynamic job shop scheduling problem (DJSP) are the precedence constraints existing between different jobs instead of the conventional technical precedence constraints existing in the operations of the same job. This paper presents the mathematical programming model of the DJSP with ETPC to minimize the mean weighted tardiness of the jobs. The mathematical model contributes to the solution and modelling of the DJSP with ETPC and it is used to solve small-sized problems to optimality. To solve industry-sized problems, a constructive heuristic called the dispatching rule (DR) is employed. This paper investigates the use of genetic programming (GP) as a hyper-heuristic in the automated generation of the problem-specific DRs for solving the problem under consideration. The genetic programming-based hyper heuristic (GPHH) approach constructs the DRs which are learned from the training instances and then verified on the test instances by the simulation experiments. To enhance the efficiency of the approach when evolving effective DRs to solve the problem, the approach is improved with strategies which consist of a problem-specific attribute selection for GP and a threshold condition mechanism for fitness evaluation. The simulation results verify the effectiveness and efficiency of the evolved DRs to the problem under consideration by comparing against the existing classical DRs. The statistical analysis of the simulation results shows that the evolved DRs outperform the selected benchmark DRs on the problem under study. The sensitivity analysis also shows that the DRs generated by the GPHH approach are robust under different scheduling performance measures. Moreover, the effects of the model parameters, including the percentage of jobs with ETPC and the machine utilization, on the performance of the DRs are investigated.
机译:在动态作业商店调度问题(DJSP)中的扩展技术优先约束(ETPC)是在不同作业之间存在的优先约束,而不是在同一作业的操作中存在的传统技术优先级约束。本文介绍了与ETPC的DJSP的数学编程模型,以最大限度地减少作业的平均加权迟到。数学模型有助于使用ETPC的DJSP的解决方案和建模,它用于解决对最优性的小小问题。为了解决行业大小的问题,采用称为调度规则(DR)的建设性启发式。本文调查了遗传编程(GP)在解决问题的自动化生成中的超启发式,以解决所考虑的问题。基于遗传编程的高启发式(GPHH)方法构造了从培训实例中学到的DRS,然后通过模拟实验在测试实例上验证。为了提高方法时,在不断发展有效的DRS解决问题时,该方法具有改进的策略,该方法包括用于GP的特定于问题的属性选择和用于适应性评估的阈值条件机制。通过与现有的经典DRS比较,仿真结果验证了所进化的DRS对所审议的问题的有效性和效率。模拟结果的统计分析表明,进化的DRS优于所选择的基准DRS对研究下的问题。灵敏度分析还表明,GPHH方法产生的DRS在不同的调度性能措施下是稳健的。此外,研究了模型参数的影响,包括使用ETPC的作业百分比和机器利用,对DRS的性能进行了影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号