首页> 外文期刊>IEEE Transactions on Reliability >Point and interval estimation for Gaussian distribution, based on progressively Type-II censored samples
【24h】

Point and interval estimation for Gaussian distribution, based on progressively Type-II censored samples

机译:基于渐进式II型删失样本的高斯分布的点和区间估计

获取原文
获取原文并翻译 | 示例

摘要

The likelihood equations based on a progressively Type-II censored sample from a Gaussian distribution do not provide explicit solutions in any situation except the complete sample case. This paper examines numerically the bias and mean square error of the MLE, and demonstrates that the probability coverages of the pivotal quantities (for location and scale parameters) based on asymptotic s-normality are unsatisfactory, and particularly so when the effective sample size is small. Therefore, this paper suggests using unconditional simulated percentage points of these pivotal quantities for constructing s-confidence intervals. An approximation of the Gaussian hazard function is used to develop approximate estimators which are explicit and are almost as efficient as the MLE in terms of bias and mean square error; however, the probability coverages of the corresponding pivotal quantities based on asymptotic s-normality are also unsatisfactory. A wide range of sample sizes and progressive censoring schemes are used in this study.
机译:基于高斯分布的渐进式II型删失样本的似然方程在任何情况下都不能提供明确的解决方案,除非是完整样本情况。本文对MLE的偏差和均方误差进行了数值检验,并证明基于渐近s-正态性的关键量(位置和尺度参数)的概率覆盖率不令人满意,尤其是当有效样本量较小时。因此,本文建议使用这些枢轴量的无条件模拟百分比来构建s置信区间。使用高斯危险函数的近似来开发近似估计量,这些估计量是明确的,并且在偏差和均方误差方面几乎与MLE一样有效;但是,基于渐近s-正态性的相应枢轴量的概率覆盖率也不令人满意。这项研究使用了广泛的样本量和渐进式审查方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号