首页> 外文期刊>IEEE Transactions on Reliability >Point and interval estimation for Gaussian distribution, based on progressively Type-II censored samples
【24h】

Point and interval estimation for Gaussian distribution, based on progressively Type-II censored samples

机译:高斯分布的点和间隔估计,基于逐步的II型官分的样本

获取原文
获取原文并翻译 | 示例

摘要

The likelihood equations based on a progressively Type-II censored sample from a Gaussian distribution do not provide explicit solutions in any situation except the complete sample case. This paper examines numerically the bias and mean square error of the MLE, and demonstrates that the probability coverages of the pivotal quantities (for location and scale parameters) based on asymptotic s-normality are unsatisfactory, and particularly so when the effective sample size is small. Therefore, this paper suggests using unconditional simulated percentage points of these pivotal quantities for constructing s-confidence intervals. An approximation of the Gaussian hazard function is used to develop approximate estimators which are explicit and are almost as efficient as the MLE in terms of bias and mean square error; however, the probability coverages of the corresponding pivotal quantities based on asymptotic s-normality are also unsatisfactory. A wide range of sample sizes and progressive censoring schemes are used in this study.
机译:除了完整的样本案例之外的任何情况下,基于逐步类型的II宣传的样本的可能性方程在任何情况下都不提供明确的解决方案。本文在数值上检查了MLE的偏差和均方误差,并证明了基于渐近S-正常性的枢转量(对于位置和比例参数)的概率覆盖是不令人满意的,特别是当有效样本大小很小时。因此,本文建议使用这些枢转量的无条件模拟百分点,用于构建S置信区间。高斯危险功能的近似用于开发显式的近似估计器,并且几乎与偏差方面的MLE高效,并且均方误差是有效的;然而,基于渐近S-正常性的相应枢转量的概率覆盖也是不令人满意的。本研究中使用了各种样本尺寸和渐进审查方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号