首页> 外文期刊>Reliability, IEEE Transactions on >Self-Tuning Routine Alarm Analysis of Vibration Signals in Steam Turbine Generators
【24h】

Self-Tuning Routine Alarm Analysis of Vibration Signals in Steam Turbine Generators

机译:汽轮发电机振动信号的自整定例行报警分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a self-tuning framework for the diagnosis of routine alarms in steam turbine generators utilizing a combination of inductive machine learning and knowledge-based heuristics. The techniques provide a novel basis for initializing and updating time series feature extraction parameters used in the automated decision support of vibration events due to operational transients. The data-driven nature of the algorithms allows for machine-specific characteristics of individual turbines to be learned and reasoned about. The paper provides a case study illustrating the routine alarm paradigm, and the applicability of systems using self-tuning techniques. The approaches discussed throughout are presented to provide useful diagnosis tools for the reliability and maintenance analysis of steam turbine generators.
机译:本文提出了一种自感应框架,用于结合感应式机器学习和基于知识的启发式方法来诊断汽轮发电机中的常规警报。该技术为初始化和更新因操作瞬变而引起的振动事件的自动决策支持中使用的时间序列特征提取参数提供了新颖的基础。算法的数据驱动性质允许学习和推理单个涡轮机的特定于机器的特性。本文提供了一个案例研究,说明了常规警报范例以及使用自整定技术的系统的适用性。本文介绍的方法可为蒸汽轮发电机的可靠性和维护分析提供有用的诊断工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号