首页> 外文期刊>Reliability, IEEE Transactions on >A Novel Dynamic-Weighted Probabilistic Support Vector Regression-Based Ensemble for Prognostics of Time Series Data
【24h】

A Novel Dynamic-Weighted Probabilistic Support Vector Regression-Based Ensemble for Prognostics of Time Series Data

机译:一种基于动态加权概率支持向量回归的时间序列数据预测集成

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel Dynamic-Weighted Probabilistic Support Vector Regression-based Ensemble (DW-PSVR-ensemble) approach is proposed for prognostics of time series data monitored on components of complex power systems. The novelty of the proposed approach consists in i) the introduction of a signal reconstruction and grouping technique suited for time series data, ii) the use of a modified Radial Basis Function (RBF) kernel for multiple time series data sets, iii) a dynamic calculation of sub-models weights for the ensemble, and iv) an aggregation method for uncertainty estimation. The dynamic weighting is introduced in the calculation of the sub-models' weights for each input vector, based on Fuzzy Similarity Analysis (FSA). We consider a real case study involving 20 failure scenarios of a component of the Reactor Coolant Pump (RCP) of a typical nuclear Pressurized Water Reactor (PWR). Prediction results are given with the associated uncertainty quantification, under the assumption of a Gaussian distribution for the predicted value.
机译:本文提出了一种新的基于动态加权概率支持向量回归的集成(DW-PSVR-ensemble)方法,用于对复杂电力系统组件上的时间序列数据进行预测。所提出方法的新颖性在于:i)引入适合于时间序列数据的信号重构和分组技术,ii)对多个时间序列数据集使用改进的径向基函数(RBF)内核,iii)动态集成的子模型权重的计算,以及iv)不确定性估计的聚合方法。在基于模糊相似性分析(FSA)的每个输入矢量的子模型权重的计算中引入了动态权重。我们考虑了一个真实案例研究,该案例涉及典型核压水堆(PWR)的反应堆冷却剂泵(RCP)组件的20种故障情况。在预测值具有高斯分布的假设下,给出了带有相关不确定性量化的预测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号