首页> 外文期刊>Microprocessors and microsystems >Probabilistic segmentation of time-series audio signals using Support Vector Machines
【24h】

Probabilistic segmentation of time-series audio signals using Support Vector Machines

机译:使用支持向量机的时间序列音频信号的概率分割

获取原文
获取原文并翻译 | 示例

摘要

To allow health tracking, patient monitoring, and provide timely user interventions, sensor signals from body sensor networks need to be processed in real-time. Time subdivisions of the sensor signals are extracted and fed into a supervised learning algorithm, such as Support Vector Machines (SVM), to learn a model capable of distinguishing different class labels. However, selecting a short-duration window from the continuous data stream is a significant challenge, and the window may not be properly centered around the activity of interest. In this work, we address the issue of window selection from a continuous data stream, using an optimized SVM-based probability model. To evaluate the effectiveness of our approach, we apply our algorithm to audio signals acquired from a wearable nutrition-monitoring necklace. Our optimized algorithm is capable of correctly classifying 86.1% of instances, compared to a baseline of 73% which segments the time-series data with fixed-size non-overlapping windows, and an exhaustive search approach with an accuracy of 92.6%.(1) (C) 2016 Elsevier B.V. All rights reserved.
机译:为了允许健康跟踪,患者监视并提供及时的用户干预,需要实时处理来自身体传感器网络的传感器信号。提取传感器信号的时间细分,并将其输入到监督学习算法(例如支持向量机(SVM))中,以学习能够区分不同类别标签的模型。但是,从连续数据流中选择短期窗口是一项重大挑战,并且窗口可能无法正确地围绕感兴趣的活动居中。在这项工作中,我们使用优化的基于SVM的概率模型解决了从连续数据流中选择窗口的问题。为了评估我们方法的有效性,我们将算法应用于从可穿戴式营养监测项链获取的音频信号。经过优化的算法能够正确分类86.1%的实例,而基线为73%的基线可以使用固定大小的不重叠窗口对时间序列数据进行细分,并且穷举搜索方法的准确度为92.6%。(1 )(C)2016 Elsevier BV保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号