首页> 外文期刊>IEEE Transactions on Reliability >Extend GO Methodology to Support Common-Cause Failures Modeling Explicitly by Means of Bayesian Networks
【24h】

Extend GO Methodology to Support Common-Cause Failures Modeling Explicitly by Means of Bayesian Networks

机译:通过贝叶斯网络,扩展到方法,以通过贝叶斯网络明确地模拟常见故障建模

获取原文
获取原文并翻译 | 示例

摘要

As a success-oriented system reliability and safety-analysis technique, the GO methodology has been applied in a variety of real-world safety-critical industrial fields. Common-cause failure (CCF) is the simultaneous failure of multicomponents within a system due to the same root cause. An enhancement approach for the original GO methodology is proposed in this paper to support CCF modeling and calculation both in graphical modeling aspect and algorithm aspect. First, a new concise and formalized GO operator (named CCO) is introduced to represent complicated CCF event, which makes the CCF modeling process intuitive and concise for analysts. In algorithm aspect, the mapping rule is given and demonstrated to transform new CCO operator with impacted multiple operators to the corresponding Bayesian network (BN) fragment. Second, general mapping programmable process is presented on transforming any CCF enhanced GO model to the corresponding BN. Furthermore, using BN's inference capability, the enhanced GO model with CCF can be calculated efficiently. Nevertheless, the diagnosis process can be performed to investigate the weak points of the modeled system. Finally, a case study is performed to demonstrate the modeling process by means of CCF enhanced GO model. The calculation result shows that CCF has significant influence on the system reliability. Using diagnosis analysis, the CCF event can be confirmed as the major cause leading to system failure.
机译:作为成功的系统可靠性和安全性分析技术,GO方法已应用于各种现实世界安全关键工业领域。由于根本原因相同,常见故障(CCF)是系统内部多组分的同时失效。本文提出了原始GO方法的增强方法,以支持图形建模方面和算法方面的CCF建模和计算。首先,引入了新的简明和正式的GO运算符(命名为CCO)以表示复杂的CCF事件,这使得CCF建模过程直观和简明分析师简明扼要。在算法方面,给出并说明映射规则,以将影响的多个运算符转换为相应的贝叶斯网络(BN)片段。其次,展示了将任何CCF增强型GO模型转换为相应的BN的常规映射可编程过程。此外,使用BN推理能力,可以有效地计算具有CCF的增强型GO模型。然而,可以进行诊断过程以研究建模系统的弱点。最后,执行案例研究以通过CCF增强的GO模型来演示建模过程。计算结果表明,CCF对系统可靠性具有显着影响。使用诊断分析,可以确认CCF事件作为导致系统故障的主要原因。

著录项

  • 来源
    《IEEE Transactions on Reliability》 |2020年第2期|471-483|共13页
  • 作者单位

    Beijing Inst Spacecraft Environm Engn Beijing 100094 Peoples R China|Beijing Key Lab Environm & Reliabil Test Technol Beijing 100094 Peoples R China;

    Beijing Inst Spacecraft Environm Engn Beijing 100094 Peoples R China|Beijing Key Lab Environm & Reliabil Test Technol Beijing 100094 Peoples R China;

    Beijing Inst Spacecraft Environm Engn Beijing 100094 Peoples R China|Beijing Key Lab Environm & Reliabil Test Technol Beijing 100094 Peoples R China;

    Beihang Univ Sch Reliabil & Syst Engn Beijing 100191 Peoples R China;

    Beijing Inst Spacecraft Environm Engn Beijing 100094 Peoples R China|Beijing Key Lab Environm & Reliabil Test Technol Beijing 100094 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Analytical models; Safety; Bayes methods; Reliability engineering; Bayesian network (BN); common-cause failure (CCF); GO methodology; mapping algorithm; reliability;

    机译:分析模型;安全;贝叶斯方法;可靠性工程;贝叶斯网络(BN);常见导致失败(CCF);GO方法;映射算法;可靠性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号