首页> 外文期刊>Nuclear Science, IEEE Transactions on >Comparison of 3D OS-EM and 4D MAP-RBI-EM Reconstruction Algorithms for Cardiac Motion Abnormality Classification Using a Motion Observer
【24h】

Comparison of 3D OS-EM and 4D MAP-RBI-EM Reconstruction Algorithms for Cardiac Motion Abnormality Classification Using a Motion Observer

机译:使用运动观测器进行心脏运动异常分类的3D OS-EM和4D MAP-RBI-EM重建算法的比较

获取原文
获取原文并翻译 | 示例

摘要

Using a heart motion observer, we compared the performance of two image reconstruction techniques, a 3D OS-EM algorithm with post Butterworth spatial filtering and a 4D MAP-RBI-EM algorithm. The task was to classify gated myocardial perfusion (GMP) SPECT images of beating hearts with or without regional motion abnormalities. Noise-free simulated GMP SPECT projection data was generated from two 4D NCAT beating heart phantom models, one with normal motion and the other with a 50% motion defect in a pie-shaped wedge region-of-interest (ROI) in the anterior-lateral left ventricular wall. The projection data were scaled to the clinical GMP SPECT count level before Poisson noise was simulated to generate 40 noise realizations. The noise-free and noisy projection data were reconstructed using the two reconstruction algorithms, parameters chosen to optimize the tradeoff between image bias and noise. As a motion observer, a 3D motion estimation method previously developed was applied to estimate the radial motion on the ROI from two adjacent gates. The receiver operating characteristic (ROC) curves were computed for radial motion magnitudes corresponding to each reconstruction technique. The area under the ROC curve (AUC) was calculated as an index for classification of regional motion. The reconstructed images with better bias and noise tradeoff were found to offer better classification for hearts with or without regional motion defects. The 3D cardiac motion estimation algorithm, serving as a heart motion observer, was better able to distinguish the abnormal from the normal regional motion in GMP SPECT images obtained from the 4D MAP-RBI-EM algorithm than from the 3D OS-EM algorithm with post Butterworth spatial filtering.
机译:使用心脏运动观察器,我们比较了两种图像重建技术的性能:3D OS-EM算法和后Butterworth空间滤波以及4D MAP-RBI-EM算法。任务是对有或没有区域运动异常的跳动心脏进行门控心肌灌注(GMP)SPECT图像分类。无噪声的模拟GMP SPECT投影数据是从两个4D NCAT跳动的心脏幻象模型生成的,一个模型具有正常运动,另一个模型具有前瓣的楔形感兴趣区域(ROI)的50%运动缺陷。左心室外侧壁。在模拟Poisson噪声以产生40种噪声实现之前,将投影数据按比例缩放到临床GMP SPECT计数水平。使用两种重建算法重建了无噪声和有噪声的投影数据,选择了用于优化图像偏差和噪声之间权衡的参数。作为运动观察者,先前开发的3D运动估计方法用于估计来自两个相邻门的ROI上的径向运动。计算了与每种重建技术相对应的径向运动幅度的接收器工作特性(ROC)曲线。计算ROC曲线下的面积(AUC)作为区域运动分类的指标。发现具有更好的偏差和噪声权衡的重建图像可以为有或没有区域运动缺陷的心脏提供更好的分类。 3D心脏运动估计算法(用作心脏运动观察者)比从带后置3D OS-EM算法的GMP SPECT图像中更好地区分出异常和正常区域运动。巴特沃思空间滤波。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号