首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
【24h】

Comparison of linear, nonlinear, and feature selection methods for EEG signal classification

机译:线性,非线性和特征选择方法用于脑电信号分类的比较

获取原文
获取原文并翻译 | 示例

摘要

The reliable operation of brain-computer interfaces (BCIs) based on spontaneous electroencephalogram (EEG) signals requires accurate classification of multichannel EEG. The design of EEG representations and classifiers for BCI are open research questions whose difficulty stems from the need to extract complex spatial and temporal patterns from noisy multidimensional time series obtained from EEG measurements. The high-dimensional and noisy nature of EEG may limit the advantage of nonlinear classification methods over linear ones. This paper reports the results of a linear (linear discriminant analysis) and two nonlinear classifiers (neural networks and support vector machines) applied to the classification of spontaneous EEG during five mental tasks, showing that nonlinear classifiers produce only slightly better classification results. An approach to feature selection based on genetic algorithms is also presented with preliminary results of application to EEG during finger movement.
机译:基于自发脑电图(EEG)信号的脑机接口(BCI)的可靠运行需要对多通道EEG进行准确分类。 BCI的EEG表示法和分类器的设计是开放的研究问题,其困难源于需要从从EEG测量获得的嘈杂的多维时间序列中提取复杂的时空模式。脑电图的高维度和高噪声特性可能会限制非线性分类方法相对于线性分类方法的优势。本文报告了线性(线性判别分析)和两个非线性分类器(神经网络和支持向量机)应用于五个脑力任务期间自发脑电分类的结果,表明非线性分类器仅产生稍微更好的分类结果。还提出了一种基于遗传算法的特征选择方法,并将其应用于手指运动期间的脑电图初步结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号