首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Interpreting spatial and temporal neural activity through a recurrent neural network brain-machine interface
【24h】

Interpreting spatial and temporal neural activity through a recurrent neural network brain-machine interface

机译:通过递归神经网络脑机接口解释时空神经活动

获取原文
获取原文并翻译 | 示例

摘要

We propose the use of optimized brain-machine interface (BMI) models for interpreting the spatial and temporal neural activity generated in motor tasks. In this study, a nonlinear dynamical neural network is trained to predict the hand position of primates from neural recordings in a reaching task paradigm. We first develop a method to reveal the role attributed by the model to the sampled motor, premotor, and parietal cortices in generating hand movements. Next, using the trained model weights, we derive a temporal sensitivity measure to asses how the model utilized the sampled cortices and neurons in real-time during BMI testing.
机译:我们建议使用优化的脑机接口(BMI)模型来解释在运动任务中生成的时空神经活动。在这项研究中,训练了一个非线性动态神经网络,可以从达到任务范式的神经记录中预测灵长类动物的手部位置。我们首先开发一种方法来揭示该模型归因于采样的运动,前运动和顶叶皮层在产生手部运动中的作用。接下来,使用训练有素的模型权重,我们导出了时间敏感性度量,以评估模型在BMI测试期间如何实时利用采样的皮质和神经元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号