首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors
【24h】

Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors

机译:FES支持的截瘫站立式的非线性建模,用于选择反馈传感器

获取原文
获取原文并翻译 | 示例

摘要

This paper presents analysis of the standing-up manoeuvre in paraplegia considering the body supportive forces as a potential feedback source in functional electrical stimulation (FES)-assisted standing-up. The analysis investigates the significance of arm, feet, and seat reaction signals to the human body center-of-mass (COM) trajectory reconstruction. The standing-up behavior of eight paraplegic subjects was analyzed, measuring the motion kinematics and reaction forces to provide the data for modeling. Two nonlinear empirical modeling methods are implemented-Gaussian process (GP) priors and multilayer perceptron artificial neural networks (ANN)-and their performance in vertical and horizontal COM component reconstruction is compared. As the input, ten sensory configurations that incorporated different number of sensors were evaluated trading off the modeling performance for variables chosen and ease-of-use in everyday application. For the purpose of evaluation, the root-mean-square difference was calculated between the model output and the kinematics-based COM trajectory. Results show that the force feedback in COM assessment in FES assisted standing-up is comparable alternative to the kinematics measurement systems. It was demonstrated that the GP provided better modeling performance, at higher computational cost. Moreover, on the basis of averaged results, the use of a sensory system incorporating a six-dimensional handle force sensor and an instrumented foot insole is recommended. The configuration is practical for realization and with the GP model achieves an average accuracy of COM estimation 16 /spl plusmn/ 1.8 mm in horizontal and 39 /spl plusmn/ 3.7 mm in vertical direction. Some other configurations analyzed in the study exhibit better modeling accuracy, but are less practical for everyday usage.
机译:本文介绍了以身体支撑力为功能性电刺激(FES)辅助站立的潜在反馈源的截瘫截肢动作的分析。该分析调查了手臂,脚和座位反应信号对人体质量中心(COM)轨迹重建的重要性。分析了八名截瘫患者的站立行为,测量了运动学运动学和反作用力,为建模提供了数据。实现了两种非线性经验建模方法-高斯过程(GP)先验和多层感知器人工神经网络(ANN)-并比较了它们在垂直和水平COM组件重构中的性能。作为输入,评估了十个结合了不同数量传感器的感官配置,以平衡在日常应用中选择的变量和易于使用的建模性能。为了进行评估,计算了模型输出与基于运动学的COM轨迹之间的均方根差。结果表明,在FES辅助站立中,COM评估中的力反馈可替代运动学测量系统。事实证明,GP以更高的计算成本提供了更好的建模性能。此外,根据平均结果,建议使用结合了六维手柄力传感器和仪表式脚内底的感觉系统。该配置很容易实现,使用GP模型时,COM估计的平均精度在水平方向为16 / spl plusmn / 1.8 mm,在垂直方向为39 / spl plusmn / 3.7 mm。研究中分析的其他一些配置具有更好的建模精度,但日常使用却不那么实用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号