首页> 外文期刊>Neural Systems and Rehabilitation Engineering, IEEE Transactions on >Learning From EEG Error-Related Potentials in Noninvasive Brain-Computer Interfaces
【24h】

Learning From EEG Error-Related Potentials in Noninvasive Brain-Computer Interfaces

机译:从无创脑机接口中与脑电错误相关的电位中学习

获取原文
获取原文并翻译 | 示例

摘要

We describe error-related potentials generated while a human user monitors the performance of an external agent and discuss their use for a new type of brain–computer interaction. In this approach, single trial detection of error-related electroencephalography (EEG) potentials is used to infer the optimal agent behavior by decreasing the probability of agent decisions that elicited such potentials. Contrasting with traditional approaches, the user acts as a critic of an external autonomous system instead of continuously generating control commands. This sets a cognitive monitoring loop where the human directly provides information about the overall system performance that, in turn, can be used for its improvement. We show that it is possible to recognize erroneous and correct agent decisions from EEG (average recognition rates of 75.8% and 63.2%, respectively), and that the elicited signals are stable over long periods of time (from 50 to $>600$ days). Moreover, these performances allow to infer the optimal behavior of a simple agent in a brain–computer interaction paradigm after a few trials.
机译:我们描述了人类用户监视外部代理的性能时产生的与错误相关的电位,并讨论了它们在新型脑机交互中的用途。在这种方法中,错误相关脑电图(EEG)电位的单次试验检测用于通过降低引起这种电位的代理决策的可能性来推断最佳代理行为。与传统方法相反,用户充当外部自治系统的批评者,而不是连续生成控制命令。这设置了一个认知监视循环,在此循环中,人类可以直接提供有关整体系统性能的信息,进而可以用来改善其性能。我们表明,有可能从EEG识别错误和正确的代理决策(平均识别率分别为75.8%和63.2%),并且所引发的信号在很长一段时间(从50到$> 600 $天)都稳定)。此外,这些性能可以通过几次试验推断出简单代理在脑机交互范式中的最佳行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号