首页> 外文期刊>Neural Systems and Rehabilitation Engineering, IEEE Transactions on >ERD-Based Online Brain–Machine Interfaces (BMI) in the Context of Neurorehabilitation: Optimizing BMI Learning and Performance
【24h】

ERD-Based Online Brain–Machine Interfaces (BMI) in the Context of Neurorehabilitation: Optimizing BMI Learning and Performance

机译:神经康复背景下基于ERD的在线脑机接口(BMI):优化BMI学习和表现

获取原文
获取原文并翻译 | 示例

摘要

Event-related desynchronization (ERD) of sensori-motor rhythms (SMR) can be used for online brain–machine interface (BMI) control, but yields challenges related to the stability of ERD and feedback strategy to optimize BMI learning. Here, we compared two approaches to this challenge in 20 right-handed healthy subjects (HS, five sessions each, S1-S5) and four stroke patients (SP, 15 sessions each, S1-S15). ERD was recorded from a 275-sensor MEG system. During daily training, motor imagery-induced ERD led to visual and proprioceptive feedback delivered through an orthotic device attached to the subjects' hand and fingers. Group A trained with a heterogeneous reference value (RV) for ERD detection with binary feedback and Group B with a homogenous RV and graded feedback (10 HS and 2 SP in each group). HS in Group B showed better BMI performance than Group A $({p} and improved BMI control from S1 to S5 $({ p}=0.012)$ while Group A did not. In spite of the small n, SP in Group B showed a trend for a higher BMI performance $({ p}=0.06)$ and learning was significantly better $({ p}< 0.05)$. Using a homogeneous RV and graded feedback led to improved modulation of ipsilesional activity resulting in superior BMI learning relative to use of a heterogeneous RV and binary feedback.
机译:感觉运动节律(SMR)的事件相关失步(ERD)可用于在线脑机接口(BMI)控制,但会带来与ERD稳定性和优化BMI学习的反馈策略有关的挑战。在这里,我们比较了20名右撇子健康受试者(HS,每节五节,S1-S5)和四名中风患者(SP,每节十五节,S1-S15)中两种应对挑战的方法。从275个传感器的MEG系统记录了ERD。在日常训练中,运动图像诱发的ERD导致视觉和本体感受反馈通过附着在受试者手和手指上的矫形器传递。 A组经过异质参考值(RV)训练,用于带有二进制反馈的ERD检测,B组具有同质RV和分级反馈(每组10 HS和2 SP)。 B组的HS表现出比A组$({p})更好的BMI性能,并将BMI控制从S1提高到S5 $({p} = 0.012)$,而A组则没有。表现出较高的BMI性能趋势({{p} = 0.06)$,而学习效果明显更好($ {{p} <0.05)$。使用同质RV和分级反馈可改善同侧活动的调制,从而获得更好的BMI与使用异类RV和二进制反馈有关的学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号