首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics
【24h】

Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics

机译:高斯过程自回归用于自然手运动学的同时比例多模态假肢控制

获取原文
获取原文并翻译 | 示例

摘要

Matching the dexterity, versatility, and robustness of the human hand is still an unachieved goal in bionics, robotics, and neural engineering. A major limitation for hand prosthetics lies in the challenges of reliably decoding user intention from muscle signals when controlling complex robotic hands. Most of the commercially available prosthetic hands use muscle-related signals to decode a finite number of predefined motions and some offer proportional control of open/close movements of the whole hand. Here, in contrast, we aim to offer users flexible control of individual joints of their artificial hand. We propose a novel framework for decoding neural information that enables a user to independently control 11 joints of the hand in a continuous manner-much like we control our natural hands. Toward this end, we instructed six able-bodied subjects to perform everyday object manipulation tasks combining both dynamic, free movements (e.g., grasping) and isometric force tasks (e.g., squeezing). We recorded the electromyographic and mechanomyographic activities of five extrinsic muscles of the hand in the forearm, while simultaneously monitoring 11 joints of hand and fingers using a sensorized data glove that tracked the joints of the hand. Instead of learning just a direct mapping from current muscle activity to intended hand movement, we formulated a novel autoregressive approach that combines the context of previous hand movements with instantaneous muscle activity to predict future hand movements. Specifically, we evaluated a linear vector autoregressive moving average model with exogenous inputs and a novel Gaussian process (gP) autoregressive framework to learn the continuous mapping from hand joint dynamics and muscle activity to decode intended hand movement. Our gP approach achieves high levels of performance (RMSE of 8°/s and ρ = 0.79). Crucially, we use a small set of sensors that allows us to control a larger set of independently actuated degrees of freedom of a hand. This novel undersensored control is enabled through the combination of nonlinear autoregressive continuous mapping between muscle activity and joint angles. The system evaluates the muscle signals in the context of previous natural hand movements. This enables us to resolve ambiguities in situations, where muscle signals alone cannot determine the correct action as we evaluate the muscle signals in their context of natural hand movements. gP autoregression is a particularly powerful approach which makes not only a prediction based on the context but also represents the associated uncertainty of its predictions, thus enabling the novel notion of risk-based control in neuroprosthetics. Our results suggest that gP autoregressive approaches with exogenous inputs lend themselves for natural, intuitive, and continuous control in neurotechnology, with the particular focus on prosthetic restoration of natural limb function, where high dexterity is required for complex movements.
机译:在仿生学,机器人技术和神经工程学中,与人的手的灵活性,多功能性和鲁棒性相匹配仍然是无法实现的目标。假肢的主要局限性在于挑战,当控制复杂的机械手时,必须从肌肉信号中可靠地解码出用户的意图。大多数市售的假肢手都使用与肌肉相关的信号来解码有限数量的预定义动作,并且其中一些提供了整只手的打开/关闭动作的比例控制。与此相反,我们的目标是为用户提供对人造手各个关节的灵活控制。我们提出了一种用于解码神经信息的新颖框架,该框架使用户能够以连续方式独立控制手的11个关节,就像控制自然手一样。为此,我们指示六个身体健全的对象执行日常对象操作任务,这些任务将动态,自由运动(例如,抓握)和等距力任务(例如,挤压)结合在一起。我们记录了前臂中手的五种外在肌肉的肌电图和肌电图活动,同时使用跟踪手关节的感测数据手套同时监控手和手指的11个关节。我们不仅学习了从当前肌肉活动到预期手部动作的直接映射,还制定了一种新颖的自回归方法,该方法将先前手部动作的背景与瞬时肌肉活动相结合,以预测未来的手部动作。具体来说,我们使用外部输入和新颖的高斯过程(gP)自回归框架评估了线性向量自回归移动平均模型,以学习从手部关节动力学和肌肉活动到预期手部运动的连续映射。我们的gP方法可实现较高的性能水平(RMSE为8°/ s,ρ= 0.79)。至关重要的是,我们使用一小组传感器,使我们能够控制一大组独立致动的手部自由度。通过将肌肉活动与关节角度之间的非线性自回归连续映射相结合,可以实现这种新型的欠传感控制。该系统在先前自然手部运动的情况下评估肌肉信号。这使我们能够解决以下情况下的歧义,即当我们在自然手部动作的背景下评估肌肉信号时,仅靠肌肉信号无法确定正确的动作。 gP自回归是一种特别强大的方法,它不仅基于上下文进行预测,而且还代表其预测的不确定性,因此在神经修复术中实现了基于风险控制的新颖概念。我们的研究结果表明,外源性输入的gP自回归方法有助于神经技术的自然,直观和连续控制,尤其着眼于自然肢体功能的假体修复,其中复杂动作需要高灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号