首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >The EEG Signal Analysis for Spatial Cognitive Ability Evaluation Based on Multivariate Permutation Conditional Mutual Information-Multi-Spectral Image
【24h】

The EEG Signal Analysis for Spatial Cognitive Ability Evaluation Based on Multivariate Permutation Conditional Mutual Information-Multi-Spectral Image

机译:基于多变量置换条件相互信息 - 多光谱图像的空间认知能力评估的EEG信号分析

获取原文
获取原文并翻译 | 示例

摘要

This study aims to find an effective method to evaluate the efficacy of cognitive training of spatial memory under a virtual reality environment, by classifying the EEG signals of subjects in the early and late stages of spatial cognitive training. This study proposes a new EEG signal analysis method based on Multivariate Permutation Conditional Mutual Information-Multi-Spectral Image (MPCMIMSI). This method mainly considers the relationship between the coupled features of EEG signals in different channel pairs and transforms the multivariate permutation conditional mutual information features into multi-spectral images. Then, a convolutional neural networks (CNN) model classifies the resultant image data into different stages of cognitive training to objectively assess the efficacy of the training. Compared to the multi-spectral image transformation method based on Granger causality analysis (GCA) and permutation conditional mutual information (PCMI), the MPCMIMSI led to better classification performance, which can be as high as 95% accuracy. More specifically, the Theta-Beta2-Gamma-band combination has the best accuracy. The proposed MPCMIMSI method outperforms the multi-spectral image transformation methods based on GCA and PCMI in terms of classification performance. The MPCMIMSI feature in the Theta-Beta2-Gamma band is an effective biomarker for assessing the efficacy of spatial memory training. The proposed EEG feature-extraction method based on MPCMIMSI offers a new window to characterize spatial information of the noninvasive EEG recordings and might apply to assessing other brain functions.
机译:本研究旨在通过对空间认知培训的早期和晚期阶段进行分类,评估虚拟现实环境下的空间记忆的认知训练的有效方法。本研究提出了一种基于多变量置换条件互信息 - 多光谱图像(MPCMIMSI)的新EEG信号分析方法。该方法主要考虑不同信道对中EEG信号的耦合特征与变换为多光谱图像的多变量置换条件互信息特征之间的关系。然后,卷积神经网络(CNN)模型将所得到的图像数据分类为认知训练的不同阶段,以客观地评估训练的功效。与基于GRANGER因果关系分析(GCA)和置换条件相互信息(PCMI)的多光谱图像变换方法相比,MPCMIMSI导致更好的分类性能,这可以高达95%的精度。更具体地,θ-beta2-gamma频带组合具有最佳精度。在分类性能方面,所提出的MPCMIMSI方法基于GCA和PCMI的多光谱图像变换方法优于多光谱图像变换方法。 THETA-BETA2-GAMMA带中的MPCMIMSI特征是一种有效的生物标志物,用于评估空间记忆训练的功效。基于MPCMIMSI的建议EEG特征提取方法提供了一个新窗口,以表征非侵入性EEG记录的空间信息,并可能适用于评估其他大脑功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号