首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Dreem Open Datasets: Multi-Scored Sleep Datasets to Compare Human and Automated Sleep Staging
【24h】

Dreem Open Datasets: Multi-Scored Sleep Datasets to Compare Human and Automated Sleep Staging

机译:DREEM OPEN DataSets:多划分的睡眠数据集可以比较人类和自动睡眠暂存

获取原文
获取原文并翻译 | 示例

摘要

Sleep stage classification constitutes an important element of sleep disorder diagnosis. It relies on the visual inspection of polysomnography records by trained sleep technologists. Automated approaches have been designed to alleviate this resource-intensive task. However, such approaches are usually compared to a single human scorer annotation despite an inter-rater agreement of about 85% only. The present study introduces two publicly-available datasets, DOD-H including 25 healthy volunteers and DOD-O including 55 patients suffering from obstructive sleep apnea (OSA). Both datasets have been scored by 5 sleep technologists from different sleep centers. We developed a framework to compare automated approaches to a consensus of multiple human scorers. Using this framework, we benchmarked and compared the main literature approaches to a new deep learning method, SimpleSleepNet, which reach state-of-the-art performances while being more lightweight. We demonstrated that many methods can reach human-level performance on both datasets. SimpleSleepNet achieved an F1 of 89.9% vs 86.8% on average for human scorers on DOD-H, and an F1 of 88.3% vs 84.8% on DOD-O. Our study highlights that state-of-the-art automated sleep staging outperforms human scorers performance for healthy volunteers and patients suffering from OSA. Considerations could be made to use automated approaches in the clinical setting.
机译:睡眠阶段分类构成睡眠障碍诊断的重要因素。它依赖于经过培训的睡眠技术人员的多核桃识别记录的视觉检查。自动化方法旨在缓解这种资源密集型任务。然而,尽管仅85%的税率协议,但这种方法通常与单一人分光器注释进行比较。本研究介绍了两种可公开的数据集,DoD-H,包括25名健康志愿者和DoD-O,其中包括患有阻塞性睡眠呼吸暂停(OSA)的55名患者。两位数据集由不同睡眠中心的5家睡眠技术人员进行评分。我们制定了一个框架,可以将自动化方法与多个人类评分器的共识进行比较。使用此框架,我们基准测试并将主要文献方法与新的深度学习方法,SimpleSleepnet进行了比较,这在更轻质的同时达到最先进的表演。我们展示了许多方法可以在两个数据集中达到人力级性能。 SimpleSleepnet平均达到89.9%的F1为86.9%,对于DoD-H的人类分机器,of of 88.3%的F1为84.8%。我们的研究亮点,最先进的自动睡眠分段优于人类分机的人类评分,为健康的志愿者和患有OSA的患者。可以考虑在临床环境中使用自动化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号