首页> 外文期刊>Network and Service Management, IEEE Transactions on >Mosaic: Advancing User Quality of Experience in 360-Degree Video Streaming With Machine Learning
【24h】

Mosaic: Advancing User Quality of Experience in 360-Degree Video Streaming With Machine Learning

机译:马赛克:通过机器学习推进360度视频流中的用户体验质量

获取原文
获取原文并翻译 | 示例

摘要

Conventional streaming solutions for streaming 360-degree panoramic videos are inefficient in that they download the entire 360-degree panoramic scene, while the user views only a small sub-part of the scene called the viewport. This can waste over 80% of the network bandwidth. We develop a comprehensive approach called Mosaic that combines a powerful neural network-based viewport prediction with a rate control mechanism that assigns rates to different tiles in the 360-degree frame such that the video quality of experience is optimized subject to a given network capacity. We model the optimization as a multi-choice knapsack problem and solve it using a greedy approach. We also develop an end-to-end testbed using standards-compliant components and provide a comprehensive performance evaluation of Mosaic along with five other streaming techniques - two for conventional adaptive video streaming and three for 360-degree tile-based video streaming. Mosaic outperforms the best of the competitions by as much as 47-191% in terms of average video quality of experience. Simulation-based evaluation as well as subjective user studies further confirm the superiority of the proposed approach.
机译:用于流式传输360度全景视频的传统流解决方案效率低,因此他们下载了整个360度全景场景,而用户只视图仅称为视口的场景的小子部分。这可能会浪费超过80%的网络带宽。我们开发了一种称为MORAIC的综合方法,该方法结合了强大的神经网络视图预测,其利用控制机制将速率分配给360度帧中的不同瓦片,使得经受给定的网络容量的优化经验的视频质量。我们将优化模拟作为多项选择背包问题,并使用贪婪的方法解决它。我们还使用标准兼容组件开发端到端测试平台,并为MOSAIC提供全面的性能评估,以及其他用于传统自适应视频流的五种其他流技术 - 两个用于基于360度Tile的视频流。在平均视频质量方面,马赛克优于比赛的最佳比赛,高达47-191%。基于模拟的评估以及主观用户研究进一步证实了所提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号