首页> 外文期刊>IEEE transactions on network and service management >Auto-Scaling Network Service Chains Using Machine Learning and Negotiation Game
【24h】

Auto-Scaling Network Service Chains Using Machine Learning and Negotiation Game

机译:使用机器学习和谈判游戏自动缩放网络服务链

获取原文
获取原文并翻译 | 示例

摘要

Network Function Virtualization (NFV) enables Network Operators (NOs) to efficiently respond to the increasing dynamicity of network services. Virtual Network Functions (VNFs) running on commercial off-the-shelf servers are easy to deploy, update, monitor, and manage. Such virtualized services are often deployed as Service Chains (SCs), which require in-sequence placement of computing and memory resources as well as routing of traffic flows. Due to the ongoing migration towards cloudification of networks, the concept of auto-scaling which originated in Cloud Computing, is now receiving attention from networks professionals too. Prior studies on auto-scaling use measured load to dynamically react to traffic changes. Moreover, they often focus on only one of the resources (e.g., compute only, or network capacity only). In this study, we consider three different resource types: compute, memory, and network bandwidth. In prior studies, NO takes auto-scaling decisions, assuming tenants are always willing to auto-scale, and Quality of Service (QoS) requirements are homogeneous. Our study proposes a negotiation-game-based auto-scaling method where tenants and NO both engage in the auto-scaling decision, based on their willingness to participate, heterogeneous QoS requirements, and financial gain (e.g., cost savings). In addition, we propose a proactive Machine Learning (ML) based prediction method to perform SC auto-scaling in dynamic traffic scenario. Numerical examples show that our proposed SC auto-scaling methods powered by ML present a win-win situation for both NO and tenants (in terms of cost savings).
机译:网络功能虚拟化(NFV)使网络运营商(NOS)能够有效地响应网络服务的越来越动态。在商用自信服务器上运行的虚拟网络功能(VNFS)易于部署,更新,监视和管理。这种虚拟化服务通常部署为服务链(SCS),其需要顺序放置计算和内存资源以及业务流的路由。由于持续迁移网络的阴云化,源自云计算的自动缩放概念现在也在网络专业人员接受关注。关于自动缩放的研究使用测量负载以动态地对交通变化进行反应。此外,它们通常只关注其中一个资源(例如,仅计算或网络容量)。在本研究中,我们考虑三种不同的资源类型:计算,内存和网络带宽。在先前的研究中,不采取自动扩展决策,假设租户始终愿意自动规模,服务质量(QoS)要求是均匀的。我们的研究提出了一种基于谈判游戏的自动缩放方法,租户和无助于自动扩展决策,基于他们参与,异构QoS要求和财务收益(例如,成本节约)。此外,我们提出了一种基于主动的机器学习(ML)的预测方法,以在动态流量方案中执行SC自动缩放。数值例子表明,我们提出的SC自动缩放方法由ML提供支持,为否和租户提供双赢(在成本节省方面)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号