首页> 外文期刊>Computer networks >Machine learning-driven service function chain placement and scaling in MEC-enabled 5G networks
【24h】

Machine learning-driven service function chain placement and scaling in MEC-enabled 5G networks

机译:机器学习驱动的服务功能链在支持MEC的5G网络中的放置和扩展

获取原文
获取原文并翻译 | 示例

摘要

5G mobile network technology promises to deliver unprecedented ultra-low latency and high data rates, paving the way for many novel applications and services. Network Function Virtualization (NFV) and Multiaccess Edge Computing (MEC) are two of the technologies that are expected to play a pivotal role in 5G to achieve ambitious Quality of Service requirements of such applications. While NFV provides flexibility by enabling network functions to be dynamically deployed and inter-connected to realize Service Function Chains (SFC), MEC brings the computing capability to the edges of the mobile network thus reducing latency and alleviating the transport network load. However, adequate mechanisms are needed to meet the dynamically changing network service demands, to optimally utilize the network resources while, at the same time, making sure that the end-to-end latency requirement of services is always satisfied.In this work, we first propose machine learning models, in particular neural-networks, that can perform auto-scaling by predicting the required number of virtual network function instances based on the traffic demand, using the traffic traces collected over a real-operator commercial network. We then employ Integer Linear Programming (ILP) techniques to formulate and solve a joint user association and SFC placement problem, where each SFC represents a service requested by a user with end-to-end latency and data rate requirements. Finally, we propose a heuristic to address the scalability concern of the ILP model. (C) 2019 Elsevier B.V. All rights reserved.
机译:5G移动网络技术有望提供前所未有的超低延迟和高数据速率,为许多新颖的应用程序和服务铺平道路。网络功能虚拟化(NFV)和多路访问边缘计算(MEC)是两项有望在5G中发挥关键作用的技术,以实现此类应用程序的宏伟的服务质量要求。 NFV通过使网络功能可以动态部署和互连以实现服务功能链(SFC)来提供灵活性,而MEC将计算功能带到了移动网络的边缘,从而减少了等待时间并减轻了传输网络的负载。但是,需要有足够的机制来满足动态变化的网络服务需求,以最佳利用网络资源,同时确保始终满足服务的端到端延迟要求。首先提出机器学习模型,特别是神经网络,该模型可以通过使用实际运营商商业网络上收集的流量跟踪,根据流量需求预测所需的虚拟网络功能实例数量来执行自动缩放。然后,我们采用整数线性规划(ILP)技术来制定和解决联合用户关联和SFC放置问题,其中每个SFC代表具有端到端延迟和数据速率要求的用户请求的服务。最后,我们提出一种启发式方法来解决ILP模型的可伸缩性问题。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号