首页> 外文期刊>Network and Service Management, IEEE Transactions on >Walking Without Friends: Publishing Anonymized Trajectory Dataset Without Leaking Social Relationships
【24h】

Walking Without Friends: Publishing Anonymized Trajectory Dataset Without Leaking Social Relationships

机译:没有朋友散步:发布匿名的轨迹数据集,而不会泄漏社会关系

获取原文
获取原文并翻译 | 示例

摘要

Trajectory data has been widely collected via mobile devices and publicly released for academic research and commercial purposes. One primary concern of publishing such a dataset is the privacy issue. Previous protection schemes mainly focus on preventing re-identification attack, which utilizes the uniqueness of trajectories. However, the correlation between trajectories, which has not been given much attention to before, could also give rise to serious privacy leakage. Recent studies have proved that it is possible to identify social relationship, de-anonymize trajectories or even infer user's locations by analyzing the correlation between users' trajectories. We identify the serious privacy problem of social relationship leakage caused by what we call social relationship attack and aim to protect social relationship information, which cannot be protected by existing algorithms. We contribute to the design of a new privacy model and an effective system to deal with social relationship attack and re-identification attack simultaneously while maintaining high data utility. We propose a Sliding Window algorithm to merge trajectories according to their social-aware distance, which concerns both the spatiotemporal distance and social proximity. Evaluations of two trajectory datasets under different scenarios demonstrate that our system provides more than 1.84 times privacy protection at the cost of only 2.5% data utility loss.
机译:轨迹数据已广泛通过移动设备收集,并公开发布参考研究和商业目的。发布此类数据集的一个主要关注点是隐私问题。以前的保护计划主要专注于防止重新识别攻击,利用轨迹的唯一性。然而,轨迹之间的相关性,这尚未引起以前的重视,也可能引起严重的隐私泄漏。最近的研究证明,通过分析用户轨迹之间的相关性,可以识别社会关系,脱姓轨迹甚至用户的位置。我们识别由我们称呼社会关系攻击的社会关系泄漏的严重隐私问题,并旨在保护社会关系信息,这不能受到现有算法的保护。我们为新的隐私模型和一个有效的系统贡献了一个新的隐私模型,并在保持高数据实用程序的同时同时处理社交关系攻击和重新识别攻击。我们提出了一种滑动窗口算法来合并轨迹根据他们的社交意识距离,涉及时空距离和社会接近。在不同方案下的两个轨迹数据集的评估表明,我们的系统以2.5%的数据实用丢失的成本提供了超过1.84倍的隐私保护。

著录项

  • 来源
  • 作者单位

    Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Elect Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Elect Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Elect Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Elect Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Elect Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Elect Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Elect Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Elect Engn Beijing 100084 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Privacy preserving data publishing; privacy; trajectory; social relationship;

    机译:隐私保留数据出版;隐私;轨迹;社会关系;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号