首页> 外文期刊>IEEE transactions on network and service management >Comparison of MongoDB and Cassandra Databases for Spectrum Monitoring As-a-Service
【24h】

Comparison of MongoDB and Cassandra Databases for Spectrum Monitoring As-a-Service

机译:用于频谱监测即服务的MongoDB数据库和Cassandra数据库的比较

获取原文
获取原文并翻译 | 示例

摘要

Due to the growing number of devices accessing the Internet through wireless networks, the radio spectrum has become a highly contended resource. The availability of low cost radio spectrum monitoring sensors enables a geographically distributed, real-time observation of the spectrum to spot inefficiencies and to develop new strategies for its utilization. The potentially large number of sensors to be deployed and the intrinsic nature of data make this task a Big Data problem. In this work we design, implement, and validate a hardware and software architecture for wideband radio spectrum monitoring inspired to the Lambda architecture. This system offers Spectrum Sensing as a Service to let end users easily access and process radio spectrum data. To minimize the latency of services offered by the platform, we fine tune the data processing chain. From the analysis of sensor data characteristics, we design the data models for MongoDB and Cassandra, two popular NoSQL databases. A MapReduce job for spectrum visualization has been developed to show the potential of our approach and to identify the challenges in processing spectrum sensor data. We experimentally evaluate and compare the performance of the two databases in terms of application processing time for different types of queries applied on data streams with heterogeneous generation rate. Our experiments show that Cassandra outperforms MongoDB in most cases, with some exceptions depending on data stream rate.
机译:由于通过无线网络访问Internet的设备数量越来越多,无线电频谱已成为竞争激烈的资源。低成本无线电频谱监视传感器的可用性使得可以对频谱进行地理分布的实时观察,以发现效率低下并开发新的利用策略。潜在的大量传感器部署和数据的固有性质使此任务成为大数据问题。在这项工作中,我们设计,实现和验证了受Lambda体系结构启发的宽带无线电频谱监视的硬件和软件体系结构。该系统提供频谱感知即服务,使最终用户可以轻松访问和处理无线电频谱数据。为了最大程度地减少平台提供的服务的延迟,我们会微调数据处理链。通过对传感器数据特征的分析,我们设计了两种流行的NoSQL数据库MongoDB和Cassandra的数据模型。已经开发了用于频谱可视化的MapReduce作业,以展示我们方法的潜力并确定在处理频谱传感器数据方面的挑战。我们以不同的生成速率,对应用到数据流上的不同类型的查询的应用程序处理时间,通过实验评估和比较了两个数据库的性能。我们的实验表明,在大多数情况下,Cassandra的性能要优于MongoDB,但有些例外取决于数据流速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号