首页> 外文期刊>IEEE transactions on nanotechnology >Analysis of Scaling Strategies for Sub-30 nm Double-Gate SOI N-MOSFETs
【24h】

Analysis of Scaling Strategies for Sub-30 nm Double-Gate SOI N-MOSFETs

机译:30 nm以下双栅极SOI N-MOSFET的缩放策略分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

State-of-the-art device simulation is applied to the analysis of possible scaling strategies for the future CMOS technology, adopting the ultrathin silicon body (UTB) double-gate (DG) MOSFET and considering the main figures of merit (FOM) for the high-performance N-MOS transistor. The results of our analysis confirm the potentials of UTB-DG MOSFETs. In particular, the possibility to control the short-channel effects by thinning the silicon layer is fully exploited allowing to adopt almost undoped silicon channel, leading to reduced transversal field. As a consequence, the impact of surface roughness at the Si-oxide interface and the gate tunneling leakage current are substantially reduced compared to the case of highly doped bulk MOSFETs. According to our results, thanks to the suppression of gate leakage current, scaling of the UTB-DG MOSFET down to the 32 nm technology node appears possible adopting $hbox{SiO}_{2}$-based gate dielectrics. In spite of the improved mobility at given inversion charge density, the simulated on-currents are substantially lower than those required by the 2005 ITRS for the 45 and 32 nm nodes . Nonetheless, thanks to relaxed scaling of the oxide thickness, hence to reduced gate capacitance, the requirements in terms of intrinsic delay and power-delay product can be satisfied. The issue of variability is analyzed by evaluating the dependence of the key FOM on the variation of critical dimensions such as the thickness of the gate oxide and of the silicon layer.
机译:最新的器件仿真技术被用于分析未来CMOS技术的可能缩放策略,采用超薄硅体(UTB)双栅(DG)MOSFET并考虑了主要品质因数(FOM)高性能N-MOS晶体管。我们的分析结果证实了UTB-DG MOSFET的潜力。特别是,充分利用了通过减薄硅层来控制短沟道效应的可能性,从而允许采用几乎未掺杂的硅沟道,从而减小了横向场。结果,与高掺杂体MOSFET的情况相比,硅氧化物界面处的表面粗糙度和栅极隧穿漏电流的影响显着降低。根据我们的结果,由于栅漏电流得到抑制,采用基于$ hbox {SiO} _ {2} $的栅电介质,UTB-DG MOSFET缩小至32 nm技术节点的规模似乎成为可能。尽管在给定的反转电荷密度下迁移率有所提高,但模拟的导通电流仍大大低于2005 ITRS对45和32 nm节点的要求。尽管如此,由于氧化物厚度的放宽比例,从而减小了栅极电容,因此可以满足本征延迟和功率延迟乘积的要求。通过评估关键FOM对关键尺寸(例如栅氧化层和硅层厚度)变化的依赖性来分析可变性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号