首页> 外文期刊>IEEE Electron Device Letters >Comparative analysis of hot electron injection and induced device degradation in scaled 0.1 /spl mu/m SOI n-MOSFETs using Monte Carlo simulation
【24h】

Comparative analysis of hot electron injection and induced device degradation in scaled 0.1 /spl mu/m SOI n-MOSFETs using Monte Carlo simulation

机译:使用蒙特卡洛模拟对比例缩放0.1 / spl mu / m SOI n-MOSFET中的热电子注入和感应器件退化进行比较分析

获取原文
获取原文并翻译 | 示例
           

摘要

A self-consistent Monte Carlo (MC) simulator is employed to investigate and compare hot electron phenomena in three competing design strategies for 0.1 /spl mu/m SOI n-MOSFETs operating under low voltage conditions, i.e., V/sub d/ considerably less than the Si-SiO/sub 2/ injection barrier height /spl phi//sub b/. Simulations of these designs reveal that non-local carrier transport effects and two-dimensional current how play a significant role in determining the relative rate and location of hot electron injection into both the front and back oxides. Specifically, simulations indicate that electron-electron interactions near the drain edge are a main source of electron energies exceeding /spl phi//sub b/. The hot electron injection distributions are then coupled with an empirical model to generate interface state distributions at both the front and back oxide interfaces. These interface states are incorporated into a drift-diffusion simulator to examine relative hot-electron-induced device degradation for the three 0.1 /spl mu/m SOI designs. Simulations suggest that both the Si layer thickness and doping distribution affect device sensitivity to hot-electron-induced interface states. In particular, the simulations show that a decrease in the channel doping results in increased sensitivity to back oxide charge. In the comparison of the heavily-doped designs, the design with a thinner T/sub Si/ experiences significantly more hot-electron-induced oxide damage in the back oxide and more degradation from the charged states at the back interface.
机译:采用自洽的蒙特卡洛(MC)模拟器,以三种竞争设计策略研究和比较热电子现象,这三种设计策略适用于在低压条件下工作的0.1 / splμm/ m SOI n-MOSFET,即V / sub d /相当小小于Si-SiO / sub 2 /注入势垒高度/ spl phi // sub b /。这些设计的仿真表明,非局部载流子传输效应和二维电流在确定热电子注入正向和反向氧化物的相对速率和位置中起着重要作用。具体而言,模拟表明,漏极边缘附近的电子电子相互作用是超过/ spl phi // sub b /的电子能量的主要来源。然后将热电子注入分布与经验模型耦合,以在正面和背面氧化物界面处生成界面状态分布。这些界面状态被合并到漂移扩散模拟器中,以检查三种0.1 / splμm/ m SOI设计的相对热电子诱导的器件性能下降。仿真表明,硅层的厚度和掺杂分布都会影响器件对热电子诱导的界面态的敏感性。特别地,仿真表明,沟道掺杂的减少导致对背氧化电荷的敏感性增加。在重掺杂设计的比较中,具有更薄T / sub Si /的设计在背氧化层中遭受的热电子诱导的氧化损伤明显更多,并且在背界面处的带电态劣化更大。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号