...
首页> 外文期刊>Nanotechnology, IEEE Transactions on >Gate-Field Engineering and Source/Drain Diffusion Engineering for High-Performance Si Wire GAA MOSFET and Low-Power Strategy in Sub-30-nm-Channel Regime
【24h】

Gate-Field Engineering and Source/Drain Diffusion Engineering for High-Performance Si Wire GAA MOSFET and Low-Power Strategy in Sub-30-nm-Channel Regime

机译:低于30 nm通道的高性能Si线GAA MOSFET的栅场工程和源/漏扩散工程以及低功耗策略

获取原文
获取原文并翻译 | 示例

摘要

This paper reconsiders the design methodology of the short-channel gate-all-around (GAA) silicon-on-insulator (SOI) MOSFET and proposes an advanced concept that offers enhanced performance. The new ideas raised herein are based on gate-field engineering and source and drain (S/D) diffusion engineering. The validity of the proposal is demonstrated by device simulations. Covering the junction of a Si wire body with a relatively thick gate insulator raises the carrier density of low-doped S/D diffusion regions, resulting in a drastic reduction in the parasitic resistance (that has, up to now, hindered performance enhancement) as well as the suppression of short-channel effects due to the effective extension of channel length; it is also demonstrated that this merit can be expected even for narrow highly doped S/D diffusion regions with abrupt junctions. The simulation results suggest that 15-nm- and 20-nm-channel GAA SOI MOSFETs with the abrupt junction will be promising if the device has a body cross section of 10 nm × 10 nm and a thick insulator covers the junction. On the other hand, since it is demonstrated that the proposed GAA device must have long and graduated S/D diffusion regions in order to achieve the expected one-order-lower standby power consumption, a loss of drivability has to be accepted. However, it is shown that drivability can be improved by slightly expanding the cross section of S/D diffusion regions without seriously impacting the area penalty.
机译:本文重新考虑了短通道全栅(GAA)绝缘体上硅(SOI)MOSFET的设计方法,并提出了一种可提高性能的先进概念。本文提出的新思想基于栅场工程和源漏(S / D)扩散工程。设备仿真证明了该建议的有效性。用相对较厚的栅极绝缘体覆盖Si线体的结点会提高低掺杂S / D扩散区域的载流子密度,从而导致寄生电阻的大幅降低(到目前为止,这一直是阻碍性能增强的原因),因为有效抑制通道长度,抑制短通道效应;还证明了即使对于具有突变结的狭窄的高掺杂S / D扩散区域,也可以预期该优点。仿真结果表明,如果器件的体截面为10 nm×10 nm,并且厚的绝缘层覆盖该结,则具有陡峭结的15 nm和20 nm沟道GAA SOI MOSFET将很有希望。另一方面,由于已证明所提出的GAA装置必须具有长且渐变的S / D扩散区域才能实现预期的低一阶的待机功耗,因此必须接受驾驶性能的损失。然而,显示出通过稍微扩大S / D扩散区域的横截面可以改善可驾驶性,而不会严重影响面积损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号