首页> 外文期刊>IEEE Transactions on Microwave Theory and Techniques >Reconstructing permittivity profiles using integral transforms and improved renormalization techniques
【24h】

Reconstructing permittivity profiles using integral transforms and improved renormalization techniques

机译:使用积分变换和改进的重归一化技术重建介电常数分布

获取原文
获取原文并翻译 | 示例

摘要

Some new ideas for reconstructing permittivity profiles in planar and cylindrical objects illuminated by TEM-, TE- or TM-polarized waves are presented in this paper. For a planar medium, an improved renormalization technique along with a revised version of the nonlinear Riccati differential equation describing the direct problem are introduced. A nonlinear Riccati-similar differential equation for the cylindrical case has also been derived here for the first time, which helps reconstructing radially varying permittivity profiles in a way parallel to that of the planar case. The above-mentioned renormalization technique has been used for the cylindrical case as well to solve the inverse problem making use of a Hankel transform. The method represents fundamental bases for a three-dimensional generalization, which is essential for microwave imaging used, e.g., in biomedical applications and for the diagnostic of diseases in trees and vegetation. A known permittivity profile has been taken to generate synthetic reflection-coefficient data by solving the nonlinear equations describing the direct problems using MATLAB. These data have been used in conjunction with the proposed technique to reconstruct the permittivity profile. About 50-100 data points over the wavelength range from a minimum value (ranging from one-tenth to one-fifth of a typical length in the structure) to infinity have been used for the reconstruction. Reconstructed profiles have been compared to the original ones for a number of cases. Deviations of less than 2% have been achieved.
机译:本文提出了一些新的思路,用于重建由TEM,TE或TM偏振波照射的平面和圆柱物体的介电常数分布。对于平面介质,介绍了一种改进的重归一化技术以及描述直接问题的非线性Riccati微分方程的修订版。此处还首次导出了用于圆柱壳的非线性Riccati相似微分方程,这有助于以平行于平面壳的方式重建径向变化的介电常数分布。上述重归一化技术也已经被用于圆柱壳,以利用汉克尔变换来解决反问题。该方法代表了三维泛化的基础,这对于例如在生物医学应用中使用的微波成像以及对树木和植被疾病的诊断是必不可少的。通过使用MATLAB解决描述直接问题的非线性方程,已采用已知的介电常数分布图来生成合成反射系数数据。这些数据已与提出的技术结合使用,以重建介电常数分布。在从最小值(结构中典型长度的十分之一到五分之一)到无限远的波长范围内,大约50-100个数据点已用于重建。在许多情况下,已将重构的配置文件与原始配置文件进行了比较。偏差小于2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号