${cal H}^{2}$-matrix-based representation of the dense system matrix arising from an inte'/> Linear-Complexity Direct and Iterative Integral Equation Solvers Accelerated by a New Rank-Minimized -Representation for Large-Scale 3-D Interconnect Extraction
首页> 外文期刊>IEEE Transactions on Microwave Theory and Techniques >Linear-Complexity Direct and Iterative Integral Equation Solvers Accelerated by a New Rank-Minimized -Representation for Large-Scale 3-D Interconnect Extraction
【24h】

Linear-Complexity Direct and Iterative Integral Equation Solvers Accelerated by a New Rank-Minimized -Representation for Large-Scale 3-D Interconnect Extraction

机译:大规模3D互连提取的新的最小秩表示加速线性复杂度直接迭代迭代方程

获取原文
获取原文并翻译 | 示例
           

摘要

We develop a new rank-minimized ${cal H}^{2}$-matrix-based representation of the dense system matrix arising from an integral-equation (IE)-based analysis of large-scale 3-D interconnects. Different from the ${cal H}^{2}$-representation generated by the existing interpolation-based method, the new ${cal H}^{2}$-representation minimizes the rank in nested cluster bases and all off-diagonal blocks at all tree levels based on accuracy. The construction algorithm of the new ${cal H}^{2}$-representation is applicable to both real- and complex-valued dense matrices generated from scalar and/or vector-based IE formulations. It has a linear complexity, and hence, the computational overhead is small. The proposed new ${cal H}^{2}$-representation can be employed to accelerate both iterative and direct solutions of the IE-based dense systems of equations. To demonstrate its effectiveness, we develop a linear-complexity preconditioned iterative solver as well as a linear-complexity direct solver for the capacitance extraction of arbitrarily shaped 3-D interconnects in multiple dielectrics. The proposed linear-complexity solvers are shown to outperform state-of-the-art ${cal H}^{2}$-based linear-complexity solvers in both CPU time and memory consumption. A dense matrix resulting from the capacitance extraction of a 3-D interconnect having 3.71 million unknowns and 576 conductors is inverted in fast CPU time (1.6 h), modest memory consumption (4.4 GB), and with prescribed accuracy satisfied on a single core running at 3 GHz.
机译:<?Pub Dtl?>我们开发了一种新的,排名最低的 $ {cal H} ^ {2} $ -matrix-大规模3-D互连的基于积分方程(IE)的分析所产生的密集系统矩阵的基于的表示形式。与现有的基于插值方法生成的 $ {cal H} ^ {2} $ 表示法不同,新 $ {cal H} ^ {2} $ -表示法可最大程度地减少嵌套簇基和所有非对角线块中的排名所有树级别基于准确性。新的 $ {cal H} ^ {2} $ -表示形式的构造算法适用于实数和复数从标量和/或基于矢量的IE公式生成的高值密集矩阵。它具有线性复杂度,因此计算开销很小。提议的新 $ {cal H} ^ {2} $ -表示形式可用于加速迭代和直接求解基于IE的密集方程组。为了证明其有效性,我们开发了线性复杂度预处理迭代求解器以及线性复杂度直接求解器,用于在多种介质中任意形状的3-D互连的电容提取。结果表明,拟议的线性复杂度求解器的性能优于最新的 $ {cal H} ^ {2} $ 的线性复杂度求解器,可同时减少CPU时间和内存消耗。由3-D互连的电容提取产生的密集矩阵具有371万个未知数和576个导体,可在快速CPU时间(1.6 h),适度的内存消耗(4.4 GB)和单核运行时满足规定的精度的情况下反转在3 GHz。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号