首页> 外文期刊>IEEE Transactions on Medical Imaging >Robust active appearance models and their application to medical image analysis
【24h】

Robust active appearance models and their application to medical image analysis

机译:鲁棒的主动外观模型及其在医学图像分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Active appearance models (AAMs) have been successfully used for a variety of segmentation tasks in medical image analysis. However, gross disturbances of objects can occur in routine clinical setting caused by pathological changes or medical interventions. This poses a problem for AAM-based segmentation, since the method is inherently not robust. In this paper, a novel robust AAM (RAAM) matching algorithm is presented. Compared to previous approaches, no assumptions are made regarding the kind of gray-value disturbance and/or the expected magnitude of residuals during matching. The method consists of two main stages. First, initial residuals are analyzed by means of a mean-shift-based mode detection step. Second, an objective function is utilized for the selection of a mode combination not representing the gross outliers. We demonstrate the robustness of the method in a variety of examples with different noise conditions. The RAAM performance is quantitatively demonstrated in two substantially different applications, diaphragm segmentation and rheumatoid arthritis assessment. In all cases, the robust method shows an excellent behavior, with the new method tolerating up to 50% object area covered by gross gray-level disturbances.
机译:活动外观模型(AAM)已成功用于医学图像分析中的各种分割任务。但是,在常规的临床环境中,由于病理变化或医疗干预,可能会引起物体的严重干扰。这给基于AAM的分割带来了一个问题,因为该方法本质上是不可靠的。本文提出了一种新颖的鲁棒AAM(RAAM)匹配算法。与以前的方法相比,没有对匹配过程中灰度值干扰的类型和/或残差的预期大小进行任何假设。该方法包括两个主要阶段。首先,借助于基于均值漂移的模式检测步骤分析初始残差。其次,目标函数用于选择不代表总体离群值的模式组合。我们在具有不同噪声条件的各种示例中证明了该方法的鲁棒性。 RAAM的性能在两种截然不同的应用(隔膜分割和类风湿关节炎评估)中得到了定量证明。在所有情况下,鲁棒方法都表现出出色的性能,新方法最多可耐受总灰度级干扰覆盖的50%的物体区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号