首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Generic Ontology Framework for Indexing Keyword Search on Massive Graphs
【24h】

A Generic Ontology Framework for Indexing Keyword Search on Massive Graphs

机译:用于索引关键字搜索的通用本体论框架在大规模图形上

获取原文
获取原文并翻译 | 示例

摘要

Due to the unstructuredness and the lack of schema information of knowledge graphs, social networks and RDF graphs, keyword search has been proposed for querying such graphs/networks. Recently, various keyword search semantics have been designed. In this paper, we propose a generic ontology-based indexing framework for keyword search, called Bisimulation of Generalized Graph Index (BiG-index), to enhance the search performance. The novelties of BiG-index reside in using an ontology graph G(Ont) to summarize and index a data graph G iteratively, to form a hierarchical index structure G. BiG-index is generic since it only requires keyword search algorithms to generate query answers from summary graphs having two simple properties. Regarding query evaluation, we transform a keyword search q into Q according to G(Ont) in runtime. The transformed query is searched on the summary graphs in G. The efficiency is due to the small sizes of the summary graphs and the early pruning of semantically irrelevant subgraphs. To illustrate BiG-index's applicability, we show popular indexing techniques for keyword search (e.g., Blinks and r-clique) can be easily implemented on top of BiG-index. Our extensive experiments show that BiG-index reduced the runtimes of popular keyword search work Blinks by 50.5 percent and r-clique by 29.5 percent.
机译:由于非结构化和知识图形,社交网络和RDF图的缺失的模式信息,已经提出了用于查询这些图形/网络的关键字搜索。最近,设计了各种关键字搜索语义。在本文中,我们提出了一种基于通用的本体论索引框架,用于关键字搜索,称为广义图索引的BISIMUTULE(BIG-INDEX),以增强搜索性能。大索引的Noveltize驻留在使用本体图G(ONT)迭代地汇总和索引数据图G.形成分层索引结构G. Big-Index是通用的,因为它只需要关键字搜索算法来生成查询答案从概要图表有两个简单的属性。关于查询评估,我们根据运行时中的g(ont)将关键字搜索q变为q。在G中的摘要图中搜索了转换的查询。效率是由于摘要图的尺寸小以及语义无关亚图的早期修剪。为了说明大指数的适用性,我们为关键字搜索(例如,闪烁,r-clique)表示流行的索引技术可以在大索引之上轻松实现。我们广泛的实验表明,大指数减少了流行的关键字搜索工作的运行时间眨眼50.5%,r-clique达到29.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号