首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Knowledge Base Reasoning with Convolutional-Based Recurrent Neural Networks
【24h】

Knowledge Base Reasoning with Convolutional-Based Recurrent Neural Networks

机译:基于卷积的经常性神经网络的知识基础推理

获取原文
获取原文并翻译 | 示例

摘要

Recurrent neural network(RNN) has achieved remarkable performances in complex reasoning on knowledge bases, which usually takes as inputs vector embeddings of relations along a path between an entity pair. However, it is insufficient to extract local correlations of a path due to RNN is better at capturing global sequential information of a path. In this paper, we take full advantages of convolutional neural network that can effectively extract local features, and propose a convolutional-based RNN architecture denoted as C-RNN to perform reasoning. C-RNN first utilizes CNN to extract local high-level correlation features of a path, and then feeds the correlation features into recurrent neural network to model the path representation. Our C-RNN architecture is adaptable to obtain not only local features but also global sequential features of a path. Based on C-RNN architecture, we devise two models, the unidirectional C-RNN and bidirectional C-RNN. We empirically evaluate them on a large-scale FreeBase+ClueWeb prediction task. Experimental results show that C-RNN models achieve state-of-the-art predictive performance.
机译:经常性的神经网络(RNN)在知识库上实现了显着的性能,这通常需要沿实体对之间的路径的输入载体嵌入的关系。然而,不足以提取由于RNN引起的路径的局部相关性更好地捕获路径的全局顺序信息。在本文中,我们采取了能够有效提取局部特征的卷积神经网络的充分优势,并提出了一种基于卷积的RNN架构,表示为C-RNN以进行推理。 C-RNN首先利用CNN提取路径的局部高电平相关特征,然后将相关特征馈送到经常性神经网络中以模拟路径表示。我们的C-RNN架构适用于不仅可以获得本地特征,还可以获得路径的全局顺序特征。基于C-RNN架构,我们设计了两个模型,单向C-RNN和双向C-RNN。我们在大规模的FreeBase + ClufeB预测任务上凭经验评估它们。实验结果表明,C-RNN模型实现了最先进的预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号