首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Reconciling Multiple Social Networks Effectively and Efficiently: An Embedding Approach
【24h】

Reconciling Multiple Social Networks Effectively and Efficiently: An Embedding Approach

机译:有效且有效地协调多个社交网络:嵌入方法

获取原文
获取原文并翻译 | 示例

摘要

Recently, reconciling social networks, identifying the accounts belonging to the same individual across social networks, receives significant attention from both academic and industry. Most of the existing studies have limitations in the following three aspects: multiplicity, comprehensiveness and robustness. To address these limitations, we rethink this problem and, for the first time, robustly and comprehensively reconcile multiple social networks. In this paper, we propose two frameworks, MASTER and MASTER+, i.e., across Multiple social networks, integrate Attribute and STructure Embedding for Reconciliation. In MASTER, we first design a novel Constrained Dual Embedding model, simultaneously embedding and reconciling multiple social networks, to formulate this problem into a unified optimization. To address this optimization, we then design an effective NS-Alternating algorithm and prove it converges to KKT points. To further speed up MASTER, we propose a scalable framework, namely MASTER+. The core idea is to group accounts into clusters and then perform MASTER in each cluster in parallel. Specifically, we design an efficient Augmented PreEmbedding model and Balance-aware Fuzzy Clustering algorithm for the high efficiency and the high accuracy. Extensive experiments demonstrate that both MASTER and MASTER+ outperform the state-of-the-art approaches. Moreover, MASTER+ inherits the effectiveness of MASTER and enjoys higher efficiency.
机译:最近,协调社交网络,识别属于社交网络的同一个人的账户,从学术和行业接受重大关注。大多数现有研究在以下三个方面有局限性:多重,全面性和鲁棒性。为了解决这些限制,我们重新思考这个问题,并且是第一次强大和全面调和多个社交网络。在本文中,我们提出了两个框架,主站和主+,即跨多个社交网络,集成了属性和结构嵌入对帐。在Master中,我们首先设计一个新颖的受限的双嵌入模型,同时嵌入和致力于多个社交网络,以将此问题与统一的优化制定。为了解决这种优化,我们将设计有效的NS交替算法,并将其融合到KKT点。为了进一步加速主人,我们提出了一个可扩展的框架,即掌握+。核心思想是将帐户分组为群集,然后并行地执行每个集群中的主机。具体而言,我们设计了一种高效的增强预介绍模型和平衡感知模糊聚类算法,高效率和高精度。广泛的实验表明,硕士和掌握+优于最先进的方法。此外,掌握+继承了大师的有效性,效率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号