首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >T-PCCE: Twitter Personality based Communicative Communities Extraction System for Big Data
【24h】

T-PCCE: Twitter Personality based Communicative Communities Extraction System for Big Data

机译:T-PCCE:基于Twitter个性的大数据的交际社区提取系统

获取原文
获取原文并翻译 | 示例

摘要

The identification of social media communities has recently been of major concern, since users participating in such communities can contribute to viral marketing campaigns. In this work, we focus on users' communication considering personality as a key characteristic for identifying communicative networks i.e., networks with high information flows. We describe the Twitter Personality based Communicative Communities Extraction (T-PCCE) system that identifies the most communicative communities in a Twitter network graph considering users' personality. We then expand existing approaches in users' personality extraction by aggregating data that represent several aspects of user behavior using machine learning techniques. We use an existing modularity based community detection algorithm and we extend it by inserting a post-processing step that eliminates graph edges based on users' personality. The effectiveness of our approach is demonstrated by sampling the Twitter graph and comparing the communication strength of the extracted communities with and without considering the personality factor. We define several metrics to count the strength of communication within each community. Our algorithmic framework and the subsequent implementation employ the cloud infrastructure and use the MapReduce Programming Environment. Our results show that the T-PCCE system creates the most communicative communities.
机译:由于参与此类社区的用户可以为病毒营销活动做出贡献,因此最近的识别是主要的关注点。在这项工作中,我们专注于用户的通信,考虑个性作为识别通信网络的关键特征,即具有高信息流的网络。我们描述了基于Twitter个性的交流社区提取(T-PCCE)系统,其考虑用户的个性,在Twitter网络图中识别最多交际社区。然后,我们通过使用机器学习技术聚合数据来扩展用户人格提取中的现有方法。我们使用现有的基于模块化的社区检测算法,并通过插入基于用户的个性来消除图形边缘的后处理步骤来扩展它。通过对提示图进行采样并比较提取的社区的通信强度而不考虑个性因素来证明我们的方法的有效性。我们定义了几个指标,以计算每个社区内的沟通强度。我们的算法框架和随后的实现使用云基础架构并使用MapReduce编程环境。我们的结果表明,T-PCCE系统创建了最新社区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号