首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >CVTM: A Content-Venue-Aware Topic Model for Group Event Recommendation
【24h】

CVTM: A Content-Venue-Aware Topic Model for Group Event Recommendation

机译:CVTM:组事件建议的内容 - 场地感知主题模型

获取原文
获取原文并翻译 | 示例

摘要

Event recommendation is essential to help people find attractive events to attend, but it intrinsically faces cold-start problem. The previous studies exploit multiple contextual factors to overcome the cold-start problem in event recommendation. However, they do not consider the correlation among different contextual factors. Moreover, suggesting events for a group of users also has not been well studied. In this paper, we first discover the correlation between organizer and textual content, i.e., the events held by the same organizer tend to have more similar content. Based on this observation, we present a content-venue-aware topic model (CVTM) to capture group interests on an event from two perspectives: content and venue. The correlation between organizer and content is modeled in CVTM to alleviate the sparsity of textual content, and then we can further extract group interests on content of an event more accurately. Finally, a group event recommendation method using CVTM is proposed. We conduct comprehensive experiments to evaluate the recommendation performance of our model on two real-world datasets. The results demonstrate that the proposed model outperforms the state-of-the-art methods that suggest upcoming events for groups. Besides, CVTM can learn semantically coherent latent topics which are useful to explain recommendations.
机译:事件建议对于帮助人们找到有吸引力的活动至关重要,但它本质上面临冷启动问题。以前的研究利用多个上下文因素来克服事件推荐中的冷启动问题。但是,它们不考虑不同的上下文因素之间的相关性。此外,建议一组用户的事件也没有得到很好的研究。在本文中,我们首先发现组织者和文本内容之间的相关性,即,同一组织者持有的事件往往具有更类似的内容。基于此观察,我们介绍了一个内容 - 场地感知主题模型(CVTM),以从两个透视图捕获对事件的组兴趣:内容和场地。组织者和内容之间的相关性在CVTM中建模,以减轻文本内容的稀疏性,然后我们可以更准确地提取对事件内容的组兴趣。最后,提出了使用CVTM的组事件推荐方法。我们进行全面的实验,以评估我们模型在两个现实世界数据集上的推荐表现。结果表明,所提出的模型优于最先进的方法,这些方法建议即将到来的群体事件。此外,CVTM可以学习语义连贯的潜在主题,这是有助于解释建议的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号