首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Blocking Self-Avoiding Walks Stops Cyber-Epidemics: A Scalable GPU-Based Approach
【24h】

Blocking Self-Avoiding Walks Stops Cyber-Epidemics: A Scalable GPU-Based Approach

机译:阻止自我避免的散步停止网络流行病:一种可扩展的基于GPU的方法

获取原文
获取原文并翻译 | 示例

摘要

Cyber-epidemics, the widespread of fake news or propaganda through social media, can cause devastating economic and political consequences. A common countermeasure against cyber-epidemics is to disable a small subset of suspected social connections or accounts to effectively contain the epidemics. An example is the recent shutdown of 125,000 ISIS-related Twitter accounts. Despite many proposed methods to identify such a subset, none are scalable enough to provide high-quality solutions in nowadays' billion-size networks. To this end, we investigate the Spread Interdiction problems that seek the most effective links (or nodes) for removal under the well-known Linear Threshold model. We propose novel CPU-GPU methods that scale to networks with billions of edges, yet possess rigorous theoretical guarantee on the solution quality. At the core of our methods is an O(1)-space out-of-core algorithm to generate a new type of random walks, called Hitting Self-avoiding Walks (HSAWs). Such a low memory requirement enables handling of big networks and, more importantly, hiding latency via scheduling of millions of threads on GPUs. Comprehensive experiments on real-world networks show that our algorithms provide much higher quality solutions and are several orders of magnitude faster than the state-of-the art. Comparing to the (single-core) CPU counterpart, our GPU implementations achieve significant speedup factors up to 177x on a single GPU and 338x on a GPU pair.
机译:网络流行病,通过社交媒体广泛的虚假新闻或宣传,可能导致毁灭性的经济和政治后果。针对网络流行病的共同对策是禁用一个小型疑似社会联系或帐户的小组,以有效地包含该流行病。一个例子是最近关闭了125,000个与ISIS相关的Twitter帐户。尽管有许多提出的方法来识别这样的子集,但没有足够可扩展,以便在亿亿亿网络中提供高质量的解决方案。为此,我们研究了寻求最有效的链路(或节点)的扩展间隔问题,用于在众所周知的线性阈值模型下去除。我们提出了新的CPU-GPU方法,这些方法将与数十亿边缘的网络缩放,但对解决方案质量具有严格的理论保障。在我们的方法的核心,是一个O(1) - 空间外核算法,以产生新型随机散步,称为击中自避免散步(HSAW)。这种低的内存要求可以通过在GPU上的数百万线程调度来处理大网络,更重要的是,更重要的是,更重要的是,躲藏潜伏期。关于现实网络的综合实验表明,我们的算法提供了更高的质量解决方案,并且比最先进的速度快几个数量级。比较(单核)CPU对应物,我们的GPU实现在单个GPU和GPU对上实现了高达177倍的重要加速因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号