首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Unified integration of explicit knowledge and learning by example in recurrent networks
【24h】

Unified integration of explicit knowledge and learning by example in recurrent networks

机译:通过循环网络中的示例,将显式知识和学习进行统一集成

获取原文
获取原文并翻译 | 示例

摘要

Proposes a novel unified approach for integrating explicit knowledge and learning by example in recurrent networks. The explicit knowledge is represented by automaton rules, which are directly injected into the connections of a network. This can be accomplished by using a technique based on linear programming, instead of learning from random initial weights. Learning is conceived as a refinement process and is mainly responsible for uncertain information management. We present preliminary results for problems of automatic speech recognition.
机译:提出了一种新颖的统一方法,以通过循环网络中的示例集成显式知识和学习。显式知识由自动机规则表示,自动机规则直接注入到网络的连接中。这可以通过使用基于线性编程的技术来完成,而不是从随机初始权重中学习。学习被认为是一种完善的过程,主要负责不确定的信息管理。我们提出了自动语音识别问题的初步结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号