首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Algorithms for finding attribute value group for binary segmentation of categorical databases
【24h】

Algorithms for finding attribute value group for binary segmentation of categorical databases

机译:寻找用于分类数据库二进制分割的属性值组的算法

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of finding a set of attribute values that give a high quality binary segmentation of a database. The quality of a segmentation is defined by an objective function suitable for the user's objective, such as "mean squared error," "mutual information," or "/spl chi//sup 2/" each of which is defined in terms of the distribution of a given target attribute. Our goal is to find value groups on a given conditional domain that split databases into two segments, optimizing the value of an objective function. Though the problem is intractable for general objective functions, there are feasible algorithms for finding high quality binary segmentations when the objective function is convex, and we prove that the typical criteria mentioned above are all convex. We propose two practical algorithms, based on computational geometry techniques, which find a much better value group than conventional heuristics.
机译:我们考虑了寻找一组属性值的问题,这些属性值给出了数据库的高质量二进制分段。分割的质量是由适合用户目标的目标函数定义的,例如“均方误差”,“互信息”或“ / spl chi // sup 2 /”,每个均以给定目标属性的分布。我们的目标是在给定的条件域中找到将数据库分为两个部分的值组,从而优化目标函数的值。尽管该问题对于通用目标函数而言是棘手的,但是当目标函数为凸形时,有可行的算法可以找到高质量的二进制分割,并且我们证明上述典型准则都是凸形的。我们提出了两种基于计算几何技术的实用算法,它们找到了比传统启发式方法更好的价值组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号