首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Mining asynchronous periodic patterns in time series data
【24h】

Mining asynchronous periodic patterns in time series data

机译:在时间序列数据中挖掘异步周期性模式

获取原文
获取原文并翻译 | 示例

摘要

Periodicy detection in time series data is a challenging problem of great importance in many applications. Most previous work focused on mining synchronous periodic patterns and did not recognize the misaligned presence of a pattern due to the intervention of random noise. In this paper, we propose a more flexible model of asynchronous periodic pattern that may be present only within a subsequence and whose occurrences may be shifted due to disturbance. Two parameters min/spl I.bar/rep and max/spl I.bar/dis are employed to specify the minimum number of repetitions that is required within each segment of nondisrupted pattern occurrences and the maximum allowed disturbance between any two successive valid segments. Upon satisfying these two requirements, the longest valid subsequence of a pattern is returned. A two-phase algorithm is devised to first generate potential periods by distance-based pruning followed by an iterative procedure to derive and validate candidate patterns and locate the longest valid subsequence. We also show that this algorithm cannot only provide linear time complexity with respect to the length of the sequence but also achieve space efficiency.
机译:在许多应用中,定期检测时间序列数据是一个非常重要的挑战性问题。以前的大多数工作都集中在挖掘同步周期模式上,并且没有认识到由于随机噪声的干预而导致的模式未对准。在本文中,我们提出了一个更灵活的异步周期模式模型,该模型可能仅出现在子序列中,并且其出现可能会由于干扰而发生偏移。使用两个参数min / spl I.bar/rep和max / spl I.bar/dis来指定在不中断模式出现的每个段内所需的最小重复次数,以及任意两个连续有效段之间的最大允许干扰。满足这两个要求后,将返回模式的最长有效子序列。设计了一种两阶段算法,首先通过基于距离的修剪生成潜在的周期,然后通过迭代过程来导出和验证候选模式并找到最长的有效子序列。我们还表明,该算法不仅可以提供相对于序列长度的线性时间复杂度,而且还可以实现空间效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号