首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Incremental, online, and merge mining of partial periodic patterns in time-series databases
【24h】

Incremental, online, and merge mining of partial periodic patterns in time-series databases

机译:时间序列数据库中部分周期模式的增量,在线和合并挖掘

获取原文
获取原文并翻译 | 示例

摘要

Mining of periodic patterns in time-series databases is an interesting data mining problem. It can be envisioned as a tool for forecasting and prediction of the future behavior of time-series data. Incremental mining refers to the issue of maintaining the discovered patterns over time in the presence of more items being added into the database. Because of the mostly append only nature of updating time-series data, incremental mining would be very effective and efficient. Several algorithms for incremental mining of partial periodic patterns in time-series databases are proposed and are analyzed empirically. The new algorithms allow for online adaptation of the thresholds in order to produce interactive mining of partial periodic patterns. The storage overhead of the incremental online mining algorithms is analyzed. Results show that the storage overhead for storing the intermediate data structures pays off as the incremental online mining of partial periodic patterns proves to be significantly more efficient than the nonincremental nononline versions. Moreover, a new problem, termed merge mining, is introduced as a generalization of incremental mining. Merge mining can be defined as merging the discovered patterns of two or more databases that are mined independently of each other. An algorithm for merge mining of partial periodic patterns in time-series databases is proposed and analyzed.
机译:时序数据库中周期性模式的挖掘是一个有趣的数据挖掘问题。可以将其设想为用于预测和预测时间序列数据的未来行为的工具。增量挖掘是指在有更多项目添加到数据库的情况下,随着时间的推移保持发现的模式的问题。由于更新时间序列数据的大多数附加属性,增量挖掘将非常有效。提出了几种在时间序列数据库中增量挖掘部分周期模式的算法,并进行了经验分析。新算法允许在线调整阈值,以便产生局部周期模式的交互式挖掘。分析了增量在线挖掘算法的存储开销。结果表明,用于存储中间数据结构的存储开销得到了回报,因为部分周期性模式的增量在线挖掘被证明比非增量非在线版本有效得多。此外,引入了一个新问题,称为合并挖掘,作为增量挖掘的概括。合并挖掘可以定义为合并两个或更多个彼此独立挖掘的数据库的发现模式。提出并分析了时间序列数据库中部分周期模式的合并挖掘算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号