首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Discovering expressive process models by clustering log traces
【24h】

Discovering expressive process models by clustering log traces

机译:通过对日志跟踪进行聚类来发现表达过程模型

获取原文
获取原文并翻译 | 示例

摘要

Process mining techniques have recently received notable attention in the literature; for their ability to assist in the (re)design of complex processes by automatically discovering models that explain the events registered in some log traces provided as input. Following this line of research, the paper investigates an extension of such basic approaches, where the identification of different variants for the process is explicitly accounted for, based on the clustering of log traces. Indeed, modeling each group of similar executions with a different schema allows us to single out "conformant" models, which, specifically, minimize the number of modeled enactments that are extraneous to the process semantics. Therefore, a novel process mining framework is introduced and some relevant computational issues are deeply studied. As finding an exact solution to such an enhanced process mining problem is proven to require high computational costs, in most practical cases, a greedy approach is devised. This is founded on an iterative, hierarchical, refinement of the process model, where, at each step, traces sharing similar behavior patterns are clustered together and equipped with a specialized schema. The algorithm guarantees that each refinement leads to an increasingly sound mDdel, thus attaining a monotonic search. Experimental results evidence the validity of the approach with respect to both effectiveness and scalability.
机译:最近,过程挖掘技术在文献中受到了极大的关注。通过自动发现解释在输入中提供的某些日志跟踪中记录的事件的模型来协助(重新)设计复杂流程的能力。遵循这一研究路线,本文研究了这种基本方法的扩展,其中基于日志跟踪的聚类,明确说明了该过程的不同变体。的确,用不同的模式对每组相似的执行进行建模允许我们挑选出“符合”模型,具体来说,这是使与过程语义无关的建模方法的数量最少。因此,引入了一种新颖的过程挖掘框架,并对一些相关的计算问题进行了深入研究。由于事实证明找到解决这种增强的过程挖掘问题的精确解决方案需要很高的计算成本,因此在大多数实际情况下,设计了一种贪婪方法。这建立在过程模型的迭代,分层,完善的基础上,其中在每个步骤中,共享相似行为模式的迹线都聚集在一起并配备有专门的模式。该算法保证每次细化都会使声音的mDdel逐渐增加,从而实现单调搜索。实验结果证明了该方法在有效性和可扩展性方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号