首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Toward the Optimal Itinerary-Based KNN Query Processing in Mobile Sensor Networks
【24h】

Toward the Optimal Itinerary-Based KNN Query Processing in Mobile Sensor Networks

机译:面向移动传感器网络中基于最优路线的KNN查询处理

获取原文
获取原文并翻译 | 示例

摘要

The K-nearest neighbors (KNN) query has been of significant interest in many studies and has become one of the most important spatial queries in mobile sensor networks. Applications of KNN queries may include vehicle navigation, wildlife social discovery, and squad/platoon searching on the battlefields. Current approaches to KNN search in mobile sensor networks require a certain kind of indexing support. This index could be either a centralized spatial index or an in-network data structure that is distributed over the sensor nodes. Creation and maintenance of these index structures, to reflect the network dynamics due to sensor node mobility, may result in long query response time and low battery efficiency, thus limiting their practical use. In this paper, we propose a maintenance-free itinerary-based approach called density-aware itinerary KNN query processing (DIKNN). The DIKNN divides the search area into multiple cone-shape areas centered at the query point. It then performs a query dissemination and response collection itinerary in each of the cone-shape areas in parallel. The design of the DIKNN scheme takes into account several challenging issues such as the trade-off between degree of parallelism and network interference on query response time, and the dynamic adjustment of the search radius (in terms of number of hops) according to spatial irregularity or mobility of sensor nodes. To optimize the performance of DIKNN, a detailed analytical model is derived that automatically determines the most suitable degree of parallelism under various network conditions. This model is validated by extensive simulations. The simulation results show that DIKNN yields substantially better performance and scalability over previous work, both as kappa increases and as the sensor node mobility increases. It outperforms the second runner with up to a 50 percent saving in energy consumption and up to a 40 percent reduction in query response time, while rendering the same level-n-n of query result accuracy.
机译:K近邻(KNN)查询已在许多研究中引起广泛关注,并已成为移动传感器网络中最重要的空间查询之一。 KNN查询的应用程序可能包括车辆导航,野生动植物社交发现以及战场上的班组/排搜索。当前在移动传感器网络中进行KNN搜索的方法需要某种类型的索引支持。该索引可以是集中式空间索引,也可以是分布在传感器节点上的网络内数据结构。创建和维护这些索引结构,以反映由于传感器节点移动性引起的网络动态,可能会导致查询响应时间长和电池效率低,从而限制了它们的实际使用。在本文中,我们提出了一种基于免维护路线的方法,称为密度感知路线KNN查询处理(DIKNN)。 DIKNN将搜索区域分为多个以查询点为中心的圆锥形区域。然后,它在每个锥形区域中并行执行查询分发和响应收集路线。 DIKNN方案的设计考虑了一些挑战性问题,例如并行度和网络干扰对查询响应时间的取舍,以及根据空间不规则性动态调整搜索半径(以跳数为单位)或传感器节点的移动性。为了优化DIKNN的性能,需要导出一个详细的分析模型,该模型可以自动确定各种网络条件下最合适的并行度。该模型已通过广泛的仿真验证。仿真结果表明,随着kappa的增加和传感器节点移动性的增加,DIKNN的性能和可伸缩性都比以前的工作好得多。在性能方面,n-n-n保持相同的水平,与第二名相比,其能耗降低了50%,查询响应时间减少了40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号