首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Parallelizing Itinerary-Based KNN Query Processing in Wireless Sensor Networks
【24h】

Parallelizing Itinerary-Based KNN Query Processing in Wireless Sensor Networks

机译:无线传感器网络中基于行程的并行KNN查询处理

获取原文
获取原文并翻译 | 示例

摘要

Wireless sensor networks have been proposed for facilitating various monitoring applications (e.g., environmental monitoring and military surveillance) over a wide geographical region. In these applications, spatial queries that collect data from wireless sensor networks play an important role. One such query is the K-Nearest Neighbor (KNN) query that facilitates collection of sensor data samples based on a given query location and the number of samples specified (i.e., K). Recently, itinerary-based KNN query processing techniques, which propagate queries and collect data along a predetermined itinerary, have been developed. Prior studies demonstrate that itinerary-based KNN query processing algorithms are able to achieve better energy efficiency than other existing algorithms developed upon tree-based network infrastructures. However, how to derive itineraries for KNN query based on different performance requirements remains a challenging problem. In this paper, we propose a Parallel Concentric-circle Itinerary-based KNN (PCIKNN) query processing technique that derives different itineraries by optimizing either query latency or energy consumption. The performance of PCIKNN is analyzed mathematically and evaluated through extensive experiments. Experimental results show that PCIKNN outperforms the state-of-the-art techniques.
机译:已经提出了无线传感器网络,以促进在广阔的地理区域上的各种监视应用(例如,环境监视和军事监视)。在这些应用中,从无线传感器网络收集数据的空间查询起着重要的作用。一种这样的查询是K最近邻居(KNN)查询,其基于给定的查询位置和指定的样本数量(即,K)来促进传感器数据样本的收集。近来,已经开发了基于路线的KNN查询处理技术,其沿预定路线传播查询并收集数据。先前的研究表明,与基于树型网络基础结构开发的其他现有算法相比,基于路线的KNN查询处理算法能够实现更好的能源效率。但是,如何根据不同的性能要求导出KNN查询的行程仍然是一个具有挑战性的问题。在本文中,我们提出了一种基于平行同心圆路线的KNN(PCIKNN)查询处理技术,该技术通过优化查询延迟或能耗来推导不同的路线。对PCIKNN的性能进行数学分析,并通过广泛的实验进行评估。实验结果表明,PCIKNN优于最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号