首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Anonymization by Local Recoding in Data with Attribute Hierarchical Taxonomies
【24h】

Anonymization by Local Recoding in Data with Attribute Hierarchical Taxonomies

机译:通过属性分层分类法对数据进行本地重新编码进行匿名化

获取原文
获取原文并翻译 | 示例

摘要

Individual privacy will be at risk if a published data set is not properly de-identified. k-anonymity is a major technique to de-identify a data set. Among a number of k-anonymisation schemes, local recoding methods are promising for minimising the distortion of a k-anonymity view. This paper addresses two major issues in local recoding k-anonymisation in attribute hierarchical taxonomies. Firstly, we define a proper distance metric to achieve local recoding generalisation with small distortion. Secondly, we propose a means to control the inconsistency of attribute domains in a generalised view by local recoding. We show experimentally that our proposed local recoding method based on the proposed distance metric produces higher quality k-anonymity tables in three quality measures than a global recoding anonymisation method, Incognito, and a multidimensional recoding anonymisation method, Multi. The proposed inconsistency handling method is able to balance distortion and consistency of a generalised view.
机译:如果未正确取消标识已发布的数据集,则个人隐私将受到威胁。 k匿名性是一种去识别数据集的主要技术。在许多k匿名方案中,局部编码方法有望使k匿名视图的失真最小。本文解决了属性分层分类法中本地重新编码k匿名化的两个主要问题。首先,我们定义适当的距离度量以实现具有较小失真的局部重新编码泛化。其次,我们提出了一种通过局部重新编码来控制广义视图中属性域不一致的方法。我们通过实验表明,与基于全局重新编码匿名化方法Incognito和多维重新编码匿名化方法Multi相比,基于提议的距离度量的提议的本地重新编码方法可在三种质量度量中产生更高质量的k-匿名表。所提出的不一致处理方法能够平衡广义视图的失真和一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号