首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Selecting Attributes for Sentiment Classification Using Feature Relation Networks
【24h】

Selecting Attributes for Sentiment Classification Using Feature Relation Networks

机译:使用特征关系网络选择情感分类的属性

获取原文
获取原文并翻译 | 示例

摘要

A major concern when incorporating large sets of diverse n-gram features for sentiment classification is the presence of noisy, irrelevant, and redundant attributes. These concerns can often make it difficult to harness the augmented discriminatory potential of extended feature sets. We propose a rule-based multivariate text feature selection method called Feature Relation Network (FRN) that considers semantic information and also leverages the syntactic relationships between n-gram features. FRN is intended to efficiently enable the inclusion of extended sets of heterogeneous n-gram features for enhanced sentiment classification. Experiments were conducted on three online review testbeds in comparison with methods used in prior sentiment classification research. FRN outperformed the comparison univariate, multivariate, and hybrid feature selection methods; it was able to select attributes resulting in significantly better classification accuracy irrespective of the feature subset sizes. Furthermore, by incorporating syntactic information about n-gram relations, FRN is able to select features in a more computationally efficient manner than many multivariate and hybrid techniques.
机译:当合并大量不同的n-gram特征集以进行情感分类时,主要关注的问题是存在嘈杂,不相关和多余的属性。这些问题通常使利用扩展功能集的增强的歧视潜力变得困难。我们提出了一种基于规则的多元文本特征选择方法,称为特征关系网络(FRN),该方法考虑了语义信息并且还利用了n-gram特征之间的句法关系。 FRN旨在有效地实现包含扩展的异构n-gram特征集,以增强情感分类。与之前的情感分类研究中使用的方法相比,在三个在线评论测试平台上进行了实验。 FRN优于单变量,多变量和混合特征选择的比较方法;无论特征子集大小如何,它都能选择属性,从而显着提高分类精度。此外,通过结合有关n元语法关系的语法信息,FRN能够以比许多多元和混合技术更有效的计算方式来选择特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号