首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Extending Recommender Systems for Disjoint User/Item Sets: The Conference Recommendation Problem
【24h】

Extending Recommender Systems for Disjoint User/Item Sets: The Conference Recommendation Problem

机译:为不相交的用户/项目集扩展推荐系统:会议推荐问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we describe the problem of recommending conference sessions to attendees and show how novel extensions to traditional model-based recommender systems, as suggested in Adomavicius and Tuzhilin [CHECK END OF SENTENCE], can address this problem. We introduce Recommendation Engine by CONjoint Decomposition of ITems and USers (RECONDITUS)ȁ4;a technique that is an extension of preference-based recommender systems to recommend items from a new disjoint set to users from a new disjoint set. The assumption being that preferences exhibited by users with known usage behavior (e.g., past conference session attendance), which can be abstracted by projections of user and item matrices, will be similar to ones of new (different) users where the basic environment and item domain are the same (e.g., new conference). RECONDITUS requires no item ratings, but operates on observed user behavior such as past conference session attendance. The RECONDITUS paradigm consists of projections of both user and item data, and the learning of relationships in projected space. Once established, the relationships enable predicting new relationships and provide associated recommendations. The approach can encompass several traditional data mining problems where both clustering and prediction are necessary. RECONDITUS has been evaluated using data from the Oracle OpenWorld conference.
机译:在本文中,我们描述了向与会者推荐会议的问题,并展示了Adomavicius和Tuzhilin [CHECK END OF SENTENCE]所建议的对基于模型的传统推荐系统的新颖扩展。我们介绍了ITem和USers的联合分解推荐引擎​​(RECONDITUS)ȁ4;该技术是基于首选项的推荐系统的扩展,可以将新的不连续集合中的项目推荐给新的不连续集合中的用户。假设具有已知使用行为(例如,过去的会议会话出席)的用户所表现出的偏好(可以通过用户和项目矩阵的预测来抽象化)将类似于基本环境和项目的新用户(不同)域是相同的(例如,新会议)。 RECONDITUS不需要项目评级,但可以根据观察到的用户行为(例如过去的会议出席情况)进行操作。 RECONDITUS范例包括用户和项目数据的投影以及对投影空间中关系的学习。一旦建立,这些关系就可以预测新的关系并提供相关的建议。该方法可以包含几个传统的数据挖掘问题,其中聚类和预测都是必需的。 RECONDITUS已使用Oracle OpenWorld会议的数据进行了评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号